92
Views
0
CrossRef citations to date
0
Altmetric
Biosensors

Comparison of Faradaic and Non-Faradaic Impedance Biosensors Using 2-Electrode and 3-Electrode Configurations for the Determination of Bovine Serum Albumin (BSA)

, , , , , & show all
Received 19 Dec 2023, Accepted 16 Jan 2024, Published online: 23 Jan 2024
 

Abstract

This paper presents a study on the impedance spectroscopy methods applied to 2-electrode and 3-electrode biosensors. While 3-electrode electrochemical biosensors have been extensively studied and applied in various applications, the 2-electrode configuration of electrochemical biosensors still lacks comprehensive investigation for real-world applications. In particular, the miniaturization of the 3-electrode configuration for integration into microfluidic devices has been explored due to the relatively limited number of previous studies. A commercial screen-printed gold electrode was employed to develop immunosensors for bovine serum albumin (BSA) detection. The comparisons were performed on non-Faradaic and Faradic immunosensors corresponding to 2-electrode and 3-electrode configurations through impedance measurements. The results show the performance of both types of sensors in detecting BSA protein. While the 2-electrode configuration-based sensor can detect the BSA protein with a sensitivity of 12 Ω/µM, the 3-electrode configuration-based sensor shows superior results with a sensitivity of 7.2 kΩ/µM. Besides, the results also indicate that the 2-electrode configuration-based sensor can easily be miniaturized to integrate into a microfluidic channel to develop lab-on-a-chip systems. Although the 3-electrode configuration demonstrates advancements compared to the 2-electrode configuration, the 2-electrode system based on non-Faradaic processes still shows high potential for future applications.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.99-2020.40. Chi Tran Nhu was funded by the Master, PhD Scholarship Programme of Vingroup Innovation Foundation (VINIF), code VINIF.2023.TS.016.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 768.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.