411
Views
5
CrossRef citations to date
0
Altmetric
Articles

A beautiful sea: P. A. M. Dirac's epistemology and ontology of the vacuum

Pages 225-256 | Received 02 May 2014, Accepted 20 Feb 2016, Published online: 19 Apr 2016
 

SUMMARY

This paper charts P.A.M. Dirac's development of his theory of the electron, and its radical picture of empty space as an almost-full plenum. Dirac's Quantum Electrodynamics famously accomplished more than the unification of special relativity and quantum mechanics. It also accounted for the ‘duplexity phenomena’ of spectral line splitting that we now attribute to electron spin. But the extra mathematical terms that allowed for spin were not alone, and this paper charts Dirac's struggle to ignore or account for them as a sea of strange, negative-energy, particles with positive ‘holes’. This work was not done in solitude, but rather in exchanges with Dirac's correspondence network. This social context for Dirac’s work contests his image as a lone genius, and documents a community wrestling with the ontological consequences of their work. Unification, consistency, causality, and community are common factors in explanations in the history of physics. This paper argues on the basis of materials in Dirac's archive that --- in addition --- mathematical beauty was an epistemological factor in the development of the electron and hole theory. In fact, if we believe that Dirac's beautiful mathematics captures something of the world, then there is both an epistemology and an ontology of mathematical beauty.

ORCID

Aaron Sidney Wright http://orcid.org/0000-0001-8428-890X

Notes

1Lorentz transformations for special relativity, and more general transformations in general relativity.

2Olivier Darrigol, From c-Numbers to Q-Numbers: The Classical Analogy in the History of Quantum Theory (Berkeley: University of California Press, 1992).

3Cited in Abraham Pais, ‘Playing with equations, the Dirac way’, in Paul Dirac: the man and his work, ed. by Peter Goddard (Cambridge: Cambridge University Press, 1998), pp. 93–116 (pp. 96–97).

4P. A. M. Dirac, ‘The Physical Interpretation of the Quantum Dynamics’, Proceedings of the Royal Society of London. Series A, 113, no. 765 (1927), 621–41. doi:10.1098/rspa.1927.0012

5Helge Kragh, ‘The Genesis of Dirac's Relativistic Theory of Electrons’, Archive for History of Exact Sciences, 24, no. 1 (1981), 31–67 (p. 50). doi:10.1007/BF00327714

6Jagdish Mehra and Helmut Rechenberg, The Completion of Quantum Mechanics 1926–1941, vol. 6, The Historical Development of Quantum Theory 2 (New York: Springer, 2001); Helge Kragh, Quantum Generations: A History of Physics in the Twentieth Century (Princeton, NJ: Princeton University Press, 1999).

7Kragh, ‘The Genesis’ (note 5).

8Laurie M. Brown, ‘Some QED myths-in-the-making? : Silvan S. Schweber, QED and the Men Who Made It: Dyson, Feynman, Schwinger and Tomonaga (Princeton University Press, 1994)’, Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 27, no. 1 (1996), 81–90. doi:10.1016/1355-2198(95)00023-2

9S. S. Schweber, QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga (Princeton, NJ: Princeton University Press, 1994).

10Helge Kragh, Dirac: A Scientific Biography (Cambridge: Cambridge University Press, 1990).

11Dalida Monti, ‘Dirac's Holes Model: From Proton to Positron’, Nuncius, 10, no. 1 (1995), 99–130.

12Darrigol, From c-Numbers to Q-Numbers (note 2), p. 302.

13Kragh, ‘The Genesis’ (note 5).

14Kragh, Dirac (note 10), pp. 87–117.

15P. A. M. Dirac, ‘The Quantum Theory of the Electron’, Proceedings of the Royal Society of London, Series A, 117, no. 778 (1928), 610–24 (p. 610). doi:10.1098/rspa.1928.0023

16To say that Dirac appealed to an aesthetics of simplicity here is not to equate simplicity with Dirac's concerns for beauty. They are related concepts, but he appealed to them in different contexts and explicitly rejected reducing beauty to simplicity. I thank an anonymous referee for prompting this clarification.

17P. A. M. Dirac, ‘Note on the Doppler Principle and Bohr's Frequency Condition’, Proceedings of the Cambridge Philosophical Society, 22 (1924), 432; Kragh, ‘The Genesis’ (note 5).

18Donald Franklin Moyer, ‘Origins of Dirac's Electron, 1925–1928′, American Journal of Physics, 49, no. 10 (1981), 944–9.

19Walter Gordon, ‘Der Comptoneffekt nach der Schrödingerschen Theorie’, Zeitschrift Für Physik, 40, no. 1/2 (November 1926), 117–77; Oskar Klein, ‘Quantentheorie und fünfdimensionale Relativitätstheorie’, Zeitschrift Für Physik, 37, no. 12 (1926), 895–906. doi:10.1007/BF01397481

20Max Born, ‘On the quantum mechanics of collisions’, in Quantum Theory and Measurement, ed. and trans. by Wojciech Hubert Zurek and John Archibald Wheeler (Princeton, NJ: Princeton University Press, [1926] 1983), pp. 52–61.

21There are other senses of mathematical non-linearity, however this is the sense of linearity that was relevant to Dirac and his contemporaries. See C. G. Darwin, ‘The Wave Equations of the Electron’, Proceedings of the Royal Society of London. Series A, 118, no. 780 (1928), 654–80. doi:10.1098/rspa.1928.0076; G. Breit, ‘An Interpretation of Dirac's Theory of the Electron’, PNAS, 14, no. 7 (1928), 553–9.

22Dirac, ‘The Quantum Theory of the Electron’ (note 15), p. 612.

23Pais, ‘Playing with equations’ (note 3); Thomas Pashby, ‘Dirac's Prediction of the Positron: A Case Study for the Current Realism Debate’, Perspectives on Science, 20, no. 4 (2012), 440–75.

24That is, new to physics.

25Because the vectors in equation (2) have four components.

26Dirac, ‘The Quantum Theory of the Electron’ (note 15), p. 615.

27Paul Forman, ‘Alfred Landé and the Anomalous Zeeman Effect, 1919-1921’, Historical Studies in the Physical Sciences, 2 (1970), 153–261.

28‘Since half the solutions must be rejected as referring to the charge on the electron, the correct number will be left to account for duplexity phenomena’. Dirac, ‘The Quantum Theory of the Electron’ (note 15), p. 618.

29Interview of Oskar Klein by J. L. Heilbron and L. Rosenfeld on 1963 February 28, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history-programs/niels-bohr-library/oral-histories/4709-4 [accessed 31 May 2013].

30N. Bohr to P. Dirac, 27 February 1928, Series II, Box 1, Folder 6, Paul A.M. Dirac Collection, Florida State University Libraries, Tallahassee, FL, 32306 USA (Hereafter ‘Dirac Papers’).

31Klein, ‘Quantentheorie und fünfdimensionale Relativitätstheorie’ (note 19); Koray Karaca, ‘Historical and Conceptual Foundations of the Higher Dimensional Unification Program in Physics’ (PhD thesis, Indiana University, 2010).

32W. Heisenberg to P. Dirac, 13 February 1928, Dirac Papers, Series II, Box 1, Folder 6.

33P. A. M. Dirac, ‘Über die Quantentheorie des Elektrons', Physikalische Zeitschrift, 29, no. 16 (August 1928), 561–63; P. A. M. Dirac, ‘Zur Quantentheorie Des Elektrons', in Leipziger Vorträge 1928: Quantentheorie Und Chemie, ed. by H. Falkenhagen, trans. by A. Eucken (Leipzig: S. Hirzel, 1928), pp. 85–94.

34Dirac, ‘Über die Quantentheorie des Elektrons' (note 33), p. 563.

35Ibid., p. 563.

36Ibid., p. 563.

37Ibid., p. 563.

38Interview with P. A. M. Dirac by Thomas S. Kuhn and Eugene Paul Wigner, at Wigner's home, Princeton, New Jersey April 1, 1962, http://www.aip.org/history/ohilist/4575_1.html [accessed 21 October 2013].

39Hermann Weyl, ‘Elektron Und Gravitation. I’, Zeitschrift Für Physik, 56, nos. 5-6 (1929), 330–52. doi:10.1007/BF01339504; Hermann Weyl, ‘Gravitation and the Electron’, PNAS, 15, no. 4 (1929), 323–34.

40Cited in Pais, ‘Playing with equations' (note 3), p. 99.

41N. Bohr to P. Dirac, 24 November 1929, Dirac Papers, Series II, Box 1, Folder 9.

42Kragh, Dirac (note 10), pp. 90–3.

43Dirac papers, Series II, Box 14, Folder 2.

44Niels Bohr, ‘The Quantum Postulate and the Recent Development of Atomic Theory,’ Nature, 121 (1928), 580–90.

45Niels Bohr, ‘Space-Time-Continuity and Atomic Physics', in Niels Bohr Collected Works, ed. Jørgen Kalckar, vol. 6 Foundations of Quantum Physics I (Amsterdam: North-Holland, 1985), p. 369.

46W. H. Furry and J. R. Oppenheimer, ‘On the Theory of the Electron and Positive’, Physical Review, 45, no. 4 (Feb 1934), 245–62. doi:10.1103/PhysRev.45.245

47Dirac papers, Series II, Box 14, Folder 2.

48P. A. M. Dirac, ‘A Theory of Electrons and Protons', Proceedings of the Royal Society of London. Series A, 126, no. 801 (1930), 360–5. doi:10.1098/rspa.1930.0013

49Kragh, Dirac (note 10), p. 96.

50Dirac's address took place Monday the 8th at 11am. P. A. M. Dirac, ‘The Proton’, Nature, 126, no. 3181 (October 1930), 605–6.

51The pencil manuscript is in Dirac Papers, Series II, Box 26, Folder 8. In the manuscript he also notes Oppenheimer’s proposal that each of electrons and protons should have their own infinite distribution of negative-energy states, cancelling the infinite charge density. J. R. Oppenheimer, ‘Note on the Theory of the Interaction of Field and Matter’, Physical Review, 35, no. 5 (Mar 1930), 461–77. doi:10.1103/PhysRev.35.461

52Dirac Papers, Series II, Box 26, Folder 8.

53Dirac Papers, Series II, Box 26, Folder 8.

54Dirac Papers, Series II, Box 26, Folder 8.

55Dirac Papers, Series II, Box 26, Folder 8.

56Bruce J Hunt, The Maxwellians (Ithaca, NY: Cornell University Press, 1991), appendix.

57W. Heisenberg to P. Dirac, 7 December 1929, Dirac Papers, Series II, Box 1, Folder 9, 1929/7–12.

58W. Heisenberg and W. Pauli, ‘Zur Quantendynamik der Wellenfelder’, Zeitschrift Für Physik, 56, nos. 1-2 (1929), 1–61; W. Heisenberg and W. Pauli, ‘Zur Quantentheorie der Wellenfelder. II’, Zeitschrift Für Physik, 59, nos. 3--4 (1930), 168–90.

59Karl Hall, ‘The Schooling of Lev Landau: The European Context of Postrevolutionary Soviet Theoretical Physics', Osiris, 23, no. 1 (2008), 230–59. doi:10.1086/591876

60For example, Norwood Russell Hanson, ‘Discovering the Positron (I)’, The British Journal for the Philosophy of Science, 12, no. 47 (1961), 208; J. C. Polkinghorne, ‘At the feet of Dirac’, in Reminiscences About a Great Physicist: Paul Adrien Maurice Dirac, ed. by Behram N. Kursunoglu and Eugene Paul Wigner (Cambridge: Cambridge University Press, 1987), p. 221; Weyl's analysis is found in Hermann Weyl, The Theory of Groups and Quantum Mechanics, trans. by H. P. Robertson (London: Methuen & Co. Ltd, [1931] 1932).

61P. A. M. Dirac, ‘Quantised Singularities in the Electromagnetic Field’, Proceedings of the Royal Society of London. Series A, 133, no. 821 (1931), 60–72. doi:10.1098/rspa.1931.0130

62Weyl's 1929 paper in PNAS was communicated 7 March 1929, his paper in Zeitschrift für Physik was communicated 9 May 1929.

63Pashby, ‘Dirac's Prediction of the Positron’ (note 23), p. 453.

64W. Heisenberg to P. Dirac, 16 January 1930, Dirac Papers, Series II, Box 2, Folder 1.

65Dirac, ‘A Theory of Electrons and Protons' (note 48), p. 360.

66W. Heisenberg to P.Dirac, 16 January 1930, Dirac Papers Series II, Box 2, Folder 1.

67See the letter from Tamm of 13 September 1930, Dirac Papers Series II, Box 2, Folder 3.

68Igor Tamm to P. Dirac, 3 March 1930, Dirac Papers, Series II, Box 2, Folder 1. See also the correspondence given in A B Kojevnikov, ed., Paul Dirac and Igor Tamm Correspondence; 1, 1928-1933, MPI-Ph-93-80 (Munich: Max-Planck Institut für Physik, 1993).

69Igor Tamm to P. Dirac, 3 March 1930, Dirac Papers, Series II, Box 2, Folder 1.

70See the published work, Igor Tamm, ‘Über die Wechselwirkung der freien Elektronen mit der Strahlung nach der Diracsehen Theorie des Elektrons und nach der Quantenelektrodynamik’, Zeitschrift Für Physik, 62, nos. 7-8 (1930), 545–68. doi:10.1007/BF01339679

71This may also be an example of Cambridge style mathematical physics problem solving, as derived from examination problems, spreading out beyond England. See Andrew Warwick, Masters of Theory: Cambridge and the Rise of Mathematical Physics (Chicago, IL: University of Chicago Press, 2003).

72V. Fock to P. Dirac, 12 February 1930, Dirac Papers, Series II, Box 2, Folder 1.

73Ibid.

74I have been informed that the letter has not been kept at Fock's archive in Russia. Personal communication, Alexei Kojevnikov, July 2015.

75V. Fock to P. Dirac, 1 March 1930, Dirac Papers, Series II, Box 2, Folder 1.

76D. Iwanenko to P. Dirac, 16 May 1930, Dirac Papers, Series II, Box 2, Folder 1.

77V. Fock and D. Iwanenko, ‘Zur Quantengeometrie’, Physikalische Zeitschrift, 30 (1929), 648; V. Fock and D. Iwanenko, ‘Quantum Geometry’, Nature, 123 (1929), 838.

78V. Ambarzumian and D. Iwanenko, ‘Zur Frage nach Vermeidung der unendlichen Selbstrückwirkung des Elektrons', Zeitschrift Für Physik, 64, nos. 7-8 (1930), 563–7; Helge Kragh and Bruno Carazza, ‘From Time Atoms to Space-Time Quantization: The Idea of Discrete Time, ca 1925–1936’, Studies in History and Philosophy of Science Part A, 25, no. 3 (1994), 457–8. doi:http://dx.doi.org/10.1016/0039-3681(94)90061-2

79Joan Bromberg, ‘The Impact of the Neutron: Bohr and Heisenberg’, Historical Studies in the Physical Sciences, 3 (1971), 324.

80I thank an anonymous referee for directing me to this literature. W. Heisenberg, ‘The Self-Energy of the Electron’, in Early Quantum Electrodynamics: A Source Book, ed. by Arthur Miller (Cambridge: Cambridge University Press, [1930] 1994), pp. 121–8; B. Carazza and H. Kragh, ‘Heisenberg's lattice world: The 1930 theory sketch’, American Journal of Physics, 63 (July 1995), 595. doi:10.1119/1.17848

81W. Heisenberg to P. Dirac, 14 July 1930, Dirac Papers, Series II, Box 2, Folder 3.

82Kragh, Quantum Generations (note 6), pp. 105–8.

83W. Heisenberg to P. Dirac, 14 July 1930, Dirac Papers, Series II, Box 2, Folder 3.

84Weyl, ‘Elektron Und Gravitation. I’ (note 39); Weyl, ‘Gravitation and the Electron’ (note 39).

85Darwin, ‘The Wave Equations of the Electron’ (note 21), p. 680; Donald Franklin Moyer, ‘Evaluations of Dirac's Electron, 1928–1932’, American Journal of Physics, 49, no. 11 (1981), 1055–62.

86In which Dirac cites Weyl's (1929) Zeitschrift für Physik paper. Dirac, 1930, page 361.

87Tamm, ‘Über die Wechselwirkung der freien Elektronen mit der Strahlung nach der Diracsehen Theorie des Elektrons und nach der Quantenelektrodynamik’ (note 70); Oppenheimer, ‘Note on the Theory of the Interaction of Field and Matter’ (note 51).

88P. A. M. Dirac, ‘The Origin of Quantum Field Theory’, in The Birth of Particle Physics, ed. by Laurie M. Brown and Lillian Hoddeson (Cambridge: Cambridge University Press, 1983), p. 52.

89Joan Bromberg, ‘The Concept of Particle Creation Before and After Quantum Mechanics', Historical Studies in the Physical Sciences, 7 (1976), 186–7.

90Dirac, ‘Quantised Singularities in the Electromagnetic Field’ (note 61).

91Kragh, Quantum Generations (note 6), pp. 174–7.

92Dirac Papers, Series II, Box 26, Folder 15, ‘Lecture on Quantum Mechanics', 72.

93Interview with Dr. P. A. M. Dirac by Thomas S. Kuhn at Cambridge, England, May 6, 1963, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, http://www.aip.org/history/ohilist/4575_2.html [accessed 21 October 2013].

94Ibid.

95Ibid.

96Dirac Papers, Series II, Box 26, Folder 15, ‘Lecture on Quantum Mechanics', 102–3.

97P. A. M. Dirac, ‘The Quantum Theory of the Emission and Absorption of Radiation’, Proceedings of the Royal Society of London. Series A, 114, no. 767 (1927), 260–1. doi:10.1098/rspa.1927.0039; Moyer, ‘Origins of Dirac's Electron, 1925–1928’ (note 18).

98Dirac Papers, Series II, Box 26, Folder 15, ‘Lecture on Quantum Mechanics', 131–2.

99Dirac Papers, Series II, Box 26, Folder 15, ‘Lecture on Quantum Mechanics', 132.

100Dirac Papers, Series II, Box 26, Folder 15, ‘Lecture on Quantum Mechanics', 132.

101Ibid., 134.

102Dirac, ‘Quantised Singularities in the Electromagnetic Field’ (note 61).

103Laurie M. Brown and Lillian Hoddeson, ‘The Birth of Elementary Particle Physics: 1930–1950’, in The Birth of Particle Physics, ed. by Laurie M. Brown and Lillian Hoddeson (Cambridge: Cambridge University Press, 1983), pp. 3–36; Carl D. Anderson and Herbert L. Anderson, ‘Unraveling the Particle Content of Cosmic Rays', in The Birth of Particle Physics, ed. by Laurie M. Brown and Lillian Hoddeson (Cambridge: Cambridge University Press, 1983), pp. 131–54.

104Carl D. Anderson, ‘The Apparent Existence of Easily Deflectable Positives', Science, 76 (9 September 1932), 238–39; Carl D. Anderson, ‘The Positive Electron’, Physical Review, 43, no. 6 (Mar 1933), 491–4. doi:10.1103/PhysRev.43.491; Patrick M.S. Blackett and G.P.S. Occhialini, ‘Some Photographs of the Tracks of Penetrating Radiation’, Proceedings of the Royal Society of London. Series A, 139, no. 839 (1933), 699–726.

105Hanson, ‘Discovering the Positron (I)’ (note 60); Norwood Russell Hanson, ‘Discovering the Positron (II)’, The British Journal for the Philosophy of Science, 12, no. 48 (1962), 299–313.

106Behram N. Kursunoglu and Eugene Paul Wigner, eds., Reminiscences About a Great Physicist: Paul Adrien Maurice Dirac (Cambridge: Cambridge University Press, 1987).

107Xavier Roqué, ‘The Manufacture of the Positron’, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 28, no. 1 (1997), 73–129.

108Quoted in Pais, ‘Playing with equations' (note 3), pp. 101–2.

109Dirac Papers, Series II, Box 26, Folder 17. The published version is P. A. M. Dirac, ‘Théorie du positron’, in Structure et propriétés des noyaux atomiques : rapports et discussions du septième Conseil de physique tenu à Bruxelles du 22 du 29 octobre 1933, sous les auspices de l'Institut international de physique Solvay (1934) Paris: Gauthier-Villars, 203--12.

110Ibid.

111Here self-consistency refers to consistency within a given theory and inter-theoretical consistency refers to consistency between theories.

112Dirac Papers, Series II, Box 26, Folder 17.

113Olivier Darrigol, ‘The Electron Theories of Larmor and Lorentz: A Comparative Study’, Historical Studies in the Physical and Biological Sciences, 24, no. 2 (1994), 265–336, http://www.jstor.org/stable/27757725.

114Dirac papers, Series II, Box 26, Folder 17.

115Dirac papers, Series II, Box 26, Folder 17.

116P. A. M. Dirac, ‘Nobel Lecture: Theory of Electrons and Positrons', Nobel Media AB, [1933] 2013, http://www.nobelprize.org/nobel_prizes/physics/laureates/1933/dirac-lecture.html [accessed 21 October 2013].

117Dirac Papers, Series II, Box 36, Folder 22.

118See also Dirac's 6 May 1967 interview with T.S. Kuhn, available at http://www.aip.org/history/ohilist/4575_2.html [accessed 21 October 2013]; Peter Galison, ‘The Suppressed Drawing: Paul Dirac's Hidden Geometry’, Representations, no. 72 (2000), 145–66.

119Dirac Papers, Series II, Box 36, Folder 22.

120P. A. M. Dirac, ‘Discussion of the Infinite Distribution of Electrons in the Theory of the Positron’, Mathematical Proceedings of the Cambridge Philosophical Society, 30, no. 2 (March 1934), 150–63. doi:10.1017/S030500410001656X; H. J. Bhabha, ‘The Scattering of Positrons by Electrons with Exchange on Dirac's Theory of the Positron’, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 154, no. 881 (1936), 195–206.

121P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford: Clarendon Press, 1930); W. Heisenberg, ‘Bemerkungen Zur Diracschen Theorie Des Positrons', Zeitschrift Für Physik, 90, nos. 3--4 (1934), 209–31. doi:10.1007/BF01333516; W. Heisenberg and H. Euler, ‘Folgerungen aus der Diracschen Theorie des Positrons', Zeitschrift Für Physik, 98, nos. 11-12 (1936), 714–32; W. Heisenberg and H. Euler, ‘Consequences of Dirac Theory of the Positron’, trans. by W. Korolevski and H. Kleinert, ArXiv Physics E-Prints, May [1936] 2006.

122P. A. M. Dirac, Lectures on Quantum Electrodynamics (Princeton, NJ: Institute for Advanced Study, 1935), Chapter IV.

123V. Weisskopf, ‘Über Die Selbstenergie Des Elektrons', Zeitschrift Für Physik, 89, nos. 1-2 (1934), 27–39; V. Weisskopf, ‘Über die Elektrodynamik des Vakuums auf Grund der Quantentheorie des Elektrons', Det Kgl. Danske Videnskabernes Selskab. Mathematisk-Fysiske Meddelelser, XIV, no. 6 (1936), 1–39; V. F. Weisskopf, ‘On the Self-Energy and the Electromagnetic Field of the Electron’, Physical Review, 56 (July 1939), 72–85. Mehra and Rechenberg, The Completion of Quantum Mechanics 1926–1941 Part IV, 3; Moyer, ‘Evaluations of Dirac's Electron, 1928–1932’ (note 85).

124Sophia Roosth and Susan Silbey, ‘Science and Technology Studies: From Controversies to Posthumanist Social Theory’, in The New Blackwell Companion to Social Theory, ed. Bryan S. Turner (Malden, MA: Blackwell Publishing Ltd., 2009), 451–73.

125Schweber, QED and the men who made it (note 9), pp. 76–152.

126Graham Farmelo, The Strangest Man: The Hidden Life of Paul Dirac, Mystic of the Atom (New York: Basic Books/Perseus Books, 2009).

127Kragh, Dirac (note 10), Ch. 4.

128Ludwik Fleck, Genesis and Development of a Scientific Fact (Chicago: The University of Chicago Press, [1935] 1981); K Knorr-Cetina, Epistemic Cultures: How the Sciences Make Knowledge (Cambridge, MA: Harvard University Press, 1999).

129Darwin, ‘The Wave Equations of the Electron’ (note 21), p. 655.

130Dirac, ‘The Quantum Theory of the Electron’ (note 15), p. 612.

131E. Uhlenbeck and S. Goudsmit, Naturwissenschaften 13, no. 47 (1925), 953; G. E. Uhlenbeck and S. Goudsmit, ‘Spinning Electrons and the Structure of Spectra’, Nature, 117 (February 1926), 264–5 and postscript by N. Bohr; S. A. Goudsmit, ‘The Discovery of the Electron Spin’, in Foundations of Modern EPR, ed. by G.R. Eaton, S.S. Eaton, and K.M. Salikhov, trans. by J. H. van der Waals (Singapore: World Scientific, [1971] 1998), [online].

132Nadia Robotti, ‘Quantum Numbers and Electron Spin: The History of a Discovery’, Archives Internationale d’Histoire Des Sciences, 40, no. 125 (1990), 305–31.

133Dirac, ‘The Quantum Theory of the Electron’ (note 15), p. 610.

134Ibid., p. 610.

135Dirac's understanding of Bohr's correspondence principle in terms of taking a large-quantum-number limit of a quantum equation dates from Fowler's lectures at Cambridge in the mid-1920s. See Dirac Papers, Series II, Box 32, Folder 4, ‘Fowler's Lectures of Quantum Theory. Cambridge 1924–1926’, [15].

136‘Our problem is to obtain a wave equation of the [linear] form [ … ] which shall be invariant under a Lorentz transformation and shall be equivalent to [the classical case] in the limit of large quantum numbers'. Dirac, ‘The Quantum Theory of the Electron’ (note 15), p. 613.

137Ibid., p. 610.

138J.W. McAllister, ‘Dirac and the Aesthetic Evaluation of Theories', Methodology and Science, 23 (1990), 87–102.

139Pais, ‘Playing with equations' (note 3), p. 98.

140Ibid., p. 109.

141Dirac, ‘Quantised Singularities in the Electromagnetic Field’ (note 61).

142P. A. M. Dirac, ‘The Relation between Mathematics and Physics', Proceedings of the Royal Society (Edinburgh), 59, no. Part II (1938–39), 122–9.

143Quoted in Pais, ‘Playing with equations', p. 110.

144Darrigol, From c-Numbers to Q-Numbers (note 2), p. 302.

145Kragh, Dirac (note 10), pp. 275–92.

146Ibid., p. 292.

147But see Darrigol, From c-Numbers to Q-Numbers (note 2), p. 345.

148Andrew Pickering, ‘Constraints on Controversy: The Case of the Magnetic Monopole’, Social Studies of Science, 11, no. 1 (February 1981), 63–93.

149Aaron Sidney Wright, ‘The Advantages of Bringing Infinity to a Finite Place: Penrose diagrams as objects of intuition’, Historical Studies in the Natural Sciences, 44, no. 2 (2014), 99–139. doi:10.1525/hsns.2014.44.2.99

150Dirac, ‘Quantised Singularities in the Electromagnetic Field’ (note 61), p. 60.

151David Hilbert, ’Mathematical problems', Bulletin of the American Mathematical Society, 8 (10) ([1900] 1902), 437–79.

152Dirac, ‘Quantised Singularities in the Electromagnetic Field’ (note 61), p. 60.

153‘A recent paper by the author may possibly be regarded as a small step according to this general scheme of advance’ (ibid., p. 61).

154Dirac Papers, Series II, Box 26, Folder 15, ‘Lecture on Quantum Mechanics', p. 1.

155Ibid., p. 60.

156See also Darrigol, From c-Numbers to Q-Numbers (note 2), p. 308.

157Helge Kragh, ‘Cosmo-Physics in the Thirties: Towards a History of Dirac Cosmology’, Historical Studies in the Physical Sciences, 13 (1982), 69–108.

158I thank an anonymous referee for making this point. See Thomas Ryckman, The Reign of Relativity: Philosophy in Physics 1915-1925 (New York: Oxford University Press, 2005), p. 205.

159Arthur Stanley Eddington, Space, Time and Gravitation: An Outline of the General Relativity Theory (Cambridge: Cambridge University Press, 1920); Arthur Stanley Eddington, The Mathematical Theory of Relativity (Cambridge: Cambridge University Press, 1923).

160Darrigol, From c-Numbers to Q-Numbers (note 2), p. 300.

161C. W Kilmister, Eddington's Search for a Fundamental Theory: A Key to the Universe (Cambridge: Cambridge University Press, 1994), p. 61.

162Darrigol, From c-Numbers to Q-Numbers (note 2), pp. 30102.

163Ibid., p. 302.

164Henry Frederick Baker's Cambridge tea parties, see ibid., pp. 295–6.

165Mara Beller, Quantum Dialogue: The Making of a Revolution (Chicago, IL: University of Chicago Press, 1999), Ch. 4.

166These notes are also available in the Archive for the History of Quantum Physics, American Philosophical Society, Microfilm 36, document 11.

167Dirac Papers, Series II, Box 26, Folder 2, ‘Lectures on Modern Quantum Mechanics', 1.

168Ibid.

169Ibid.

170Dirac Papers, Series II, Box 26, Folder 4, ‘Cambridge Adams Society Elements of Quantum Mechanics', 1.

171Ibid.

172Mara Beller, ‘The Rhetoric of Antirealism and the Copenhagen Spirit’, Philosophy of Science, 63, no. 2 (Jun. 1996), 183–204.

173Dirac, ‘The Relation between Mathematics and Physics' (note 142). Published as P.A.M. Dirac, ‘The Relation between Mathematics and Physics', Proceedings of the Royal Society (Edinburgh), 59(Part II) (1938-39), 122–9.

174Dirac Papers, Series II, Box 36, Folder 27.

175Dirac Papers, Series II, Box 29, Folder 2, Harvard ‘The Road that Led to Antimatter’, 1.

176Dirac Papers, Series II, Box 29, Folder 18, ‘Lindau’ ‘Basic beliefs and Prejudices in Physics', 2.

177Printed in P. A. M. Dirac, ‘The Mathematical Foundations of Quantum Theory’, in Mathematical Foundations of Quantum Theory, ed. by A. R. Marlow (New York: Academic Press, 1978), pp. 1–8.

178Dirac Papers, Series II, Box 29, Folder 22, ‘New Orleans', ‘[Mathematical foundations of quantum theory]’, 1–2.

179Dirac Papers, Series II, Box 29, Folder 42, ‘New Orleans' ‘Pretty Mathematics', 2.

180Interview with P. A. M. Dirac by Thomas S. Kuhn and Eugene Paul Wigner, at Wigner's home, Princeton, New Jersey April 1, 1962, http://www.aip.org/history/ohilist/4575_1.html, [accessed 21 October 2013].

181Warwick, Masters of Theory (note 71), pp. 176–226.

182And Dirac was not studying for the mathematical tripos exam that centres Warwick's analysis. Dirac arrived at Cambridge with a degree from Bristol as a research student studying for the PhD.

183Aaron Sidney Wright, ‘The Advantages of Bringing Infinity to a Finite Place: Penrose diagrams as objects of intuition’, note 149.

184Interview with P. A. M. Dirac by Thomas S. Kuhn and Eugene Paul Wigner, at Wigner's home, Princeton, New Jersey April 1, 1962, http://www.aip.org/history/ohilist/4575_1.html [accessed 21 October 2013].

185Dirac Papers, Series II, Box 36, Folder 22, ‘Theory of the Positron’.

186Galison, ‘The Suppressed Drawing’ (note 118).

187Dirac Papers, Series II, Box 29 Folder 17 ‘[Mathematics will lead you by the hand]’.

188Interview with Dr. P. A. M. Dirac, By Thomas S. Kuhn, At Cambridge, England, May 6, 1963, http://www.aip.org/history/ohilist/4575_2.html [accessed 27 October 2013].

189P. A. M. Dirac, General Theory of Relativity (Princeton, NJ: Princeton University Press, [1975] 1996).

Additional information

Funding

The author gratefully acknowledges the support of the Social Sciences and Humanities Research Council of Canada [767-2011-2547, 756-2014-0128].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 609.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.