1,932
Views
63
CrossRef citations to date
0
Altmetric
Nature and Society

Deterritorializing Extraction: Bioaccumulation and the Planetary Mine

Pages 560-576 | Received 01 Aug 2012, Accepted 01 Nov 2013, Published online: 29 Apr 2014
 

Abstract

Two independent technical developments have transformed the metal mining industry in considerable ways: the increasing share of waste materials in the feedstock of metallurgical operations has partially transformed metal extraction into a recycling industry, and the employment of microorganisms in the extraction of metals from mineral ores has rendered metals mining a biologically based industry. Increasing industrial interest and research activity in the application of biotechnologies to the extraction of metals from waste, particularly electronic waste, intimate a potential intersection of those two processes, destabilizing further the analytical distinctions between extraction and manufacturing, biologically based and nonbiologically based production, waste and resources. This combined deterritorialization of metal extraction requires a theoretical deterritorialization: rethinking extraction beyond extractive industry narrowly defined and the role that nonhuman forms of life play in the production of value in nonbiologically based (extractive) industries. This article is a first step toward outlining the effects of such developments on understanding extraction. It begins by reflecting on the effects of recycling on the spatiality and materiality of the mine and then it proceeds to examine the productive role of microorganisms in mining, the limits of biomining, and the biotechnologies that have developed to transcend those limits. The conclusion draws out theoretical implications of those ongoing lines of deterritorialization and their combination on understanding the spatiotemporality of extraction and the active involvement of nonhuman nature in the production of value.

两项独立的技术发展, 大幅改变了金属採矿业: 冶金作业原料中逐渐增加的废弃物质比例, 已将部分的金属萃取转变成回收产业, 从矿种萃取金属的过程中运用微生物, 则使得金属採矿成为以生物学为基础的产业。对于将生物科技应用至从废弃物、特别是电子废弃物中萃取出金属, 有着逐渐增加的产业兴趣及研究活动, 提示了上述两个过程的互动潜力, 并进一步挑战了萃取与製造、根据生物与非生物的生产, 以及废弃物与资源之间的分析区别。此般金属萃取的联合去领域化, 同时需要理论的去领域化: 在狭隘定义的冶金工业之外重新思考冶金, 以及非人类的生命形式在以非生物为基础的 (冶金) 工业的价值生产中所扮演的角色。本文是迈向概论此般发展对于理解冶金之影响的第一步。本文首先反思回收对于矿场的物质性及空间性的影响, 接着检视微生物在採矿中的生产性角色、生物採矿的限制, 以及克服上述限制的生物科技发展。研究结论部分, 从上述持续进行中的去领域化路径与路径的结合中汲取理论意涵, 以理解冶金的时空性和积极参与至价值生产的非人类本质 。

La industria minera de metales ha sido transformada de manera considerable por dos desarrollos técnicos independientes: la proporción en aumento de elementos de desecho en los materiales con los que se alimentan las operaciones metalúrgicas ha transformado parcialmente la extracción de metales en una industria de reciclaje, y el empleo de microorganismos en la extracción de metales de rocas que albergan el mineral ha convertido la minería de metales en una industria apoyada biológicamente. El creciente interés industrial y la actividad investigativa para la aplicación de biotecnologías en la extracción de los metales contenidos en desechos, en particular en la basura electrónica, permiten entrever una interacción potencial de los dos procesos, desestabilizando aun más las distinciones analíticas entre los procesos de extracción y manufactura, la producción de base biológica y la abiótica, residuos y recursos. Esta desterritorialización combinada de extracción de metales demanda una desterritorialización teórica: repensar la extracción más allá de la industria extractiva definida con estrechez y el papel que juegan formas de vida no humana en la producción de valor en industrias (extractivas) que no están biológicamente basadas. El presente artículo es un paso inicial hacia el enunciado de los efectos de tales desarrollos en el entendimiento de la extracción. El artículo empieza con una reflexión sobre los efectos del reciclaje sobre la espacialidad y materialidad de la mina y luego se procede a examinar el papel productivo de los microorganismos en minería, los límites de biominería y las biotecnologías que han sido desarrolladas para trascender aquellos límites. La conclusión extrae implicaciones teóricas de aquella líneas de desterritorialización y su combinación para tratar de entender la espacio-temporalidad de la extracción y la activa participación de la naturaleza no humana en la producción de valor.

Acknowledgments

I would like to thank the four anonymous reviewers for their critical comments and suggestions. I am also grateful to Gavin Bridge, Freyja Knapp, and Laura Schneider for their generous and encouraging readings of the earliest versions of this article, and especially to Laura for many stimulating conversations about microbiology and biochemistry. A version of the article was presented at Syracuse University and I would like to thank the faculty and students of the Geography Department for a very engaging discussion. I would finally like to acknowledge my gratitude to Bruce Braun for providing rigorous criticism and judicious advice throughout.

Notes

1See Grant and Oteng-Ababio (Citation2012). Dowa (Citation2008), a Japanese mining company that recovers rare earth and precious metals from electronic waste, refers to its recycling activities as “urban mining” and to e-waste and industrial scrap collectively as a “mine in the city” and individually as “urban mines.”

2On extended urbanization see Monte-Mór (Citation2005) and Soja and Kanai (Citation2007).

3The term is from Teck (Citation2007), which refers to metal-baring scrap, including end-of-life electronic equipment. See also Walsh et al. (Citation2006) and Graedel (Citation2011).

4Head grade averages are based on my calculations from various companies’ annual reports.

5See Brandl (Citation2001); Rawlings (Citation1997, Citation2002, Citation2004, Citation2005); Rawlings, Tributsch, and Hansford (Citation1999); Rawlings, Dew, and du Plessis (Citation2003); Rohwerder et al. (Citation2003); Mishra et al. (Citation2005); and Brandl and Faramarzi (Citation2006).

6Note that although microbes are minuscule by definition, microbial biofilms occupy large areas and account for a large component of the global biomass (see Viles Citation2012).

7Generally, there are two types of biomining technologies: leaching by irrigation, or percolation, which includes in situ (underground) bioleaching, dump bio-leaching, and heap bioleaching (dump and heap bio-leaching account for 20 to 25 percent of current global copper production); and tank-based bioleaching or biooxidation, which is carried out in aerated, continuously stirred tank reactors. Biooxidation, which is applied to the recovery of gold from recalcitrant ores, involves the same microbial mechanism as in bioleaching, but it does not involve the solubilization of the metal. Instead, it decomposes the mineral matrix and exposes it for treatment with chemicals, leaving the entrapped metal in its solid state. It is considered together with bioleaching in the technical literature, so for the sake of consistency I do the same here.

8Although efforts to engineer microbes and entire microbial systems have been underway since the late 1980s (Jerez Citation2008; see also Valenzuela et al. Citation2006), several reasons colluded to slow down the genetic engineering of biomining microbes. In many ways, however, the bioleaching process itself has been conducive to genetic mutation because it reinforces the “positive selection” of the “fittest microorganism” and stable consortia of organisms (Norris Citation2007; Rawlings Citation2007). Indeed, the commercialization of biooxidation would not have been possible without pressure on A. ferrooxidans that increased its leaching rate tenfold and reduced its retention time from 12 to 3.5 days.

9Chalcopyrite is often “contaminated” by such elements as cobalt, nickel, manganese, zinc, tin, chromium, aluminum, silver, gold, indium, lead, palladium, platinum, thallium, selenium, tellurium, vanadium, antimony, and arsenic—this makes bioleaching chalcopyrite particularly pertinent to e-waste recycling because e-waste matrices usually contain several metals that cannot all be recovered by smelting.

10See Cui and Zhang (Citation2008) and Pant et al. (Citation2012) for comparison of biotechnology with other methods employed in extracting metals from e-waste.

11See BioMinE, http://biomine.brgm.fr/index.asp (last accessed 1 August 2012).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 312.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.