36
Views
3
CrossRef citations to date
0
Altmetric
Reviews

What do dopamine transporter and catechol-o-methyltransferase tell us about attention deficit–hyperactivity disorder? Pharmacogenomic implications

Pages 10-16 | Received 20 May 2006, Published online: 06 Jul 2009
 

Abstract

The purpose of the present paper was to review studies of two candidate genes for attention deficit–hyperactivity disorder (ADHD) and to separate aetiological from therapeutic effects. Genomic studies of ADHD were reviewed for candidate dopamine genes and studies selected to distinguish catechol-o-methyltransferase (COMT) and dopamine transporter (DAT-1) effects. Pharmacogenomic findings for the COMT gene were in agreement with the 1977 observations of Sprague and Sleator, who reported that at low psychostimulant doses, children with ADHD showed a remarkable improvement on a short-term memory test at all levels of task load, whereas at higher doses, there was a significant decrement in performance on the more difficult versions of the task, corresponding to an ‘inverted ‘U’ shaped curve’. Recent studies show that individuals with the homozygous COMT (valine/valine) genotype demonstrated improvement following psychostimulant treatment, because their tonic dopamine (DA) levels were low, whereas the homozygous COMT (methionine/methionine) individuals, who already have high initial prefrontal cortex (PFC) dopamine levels performed more poorly after medication, in tasks with high working memory load. On the other hand aetiological findings for DAT-1 gene were heterogenous, but more often positive than for COMT. Contrasting findings for COMT and DAT-1 may best be considered in terms of prediction of medication response in ADHD in the case of COMT, but in aetiological terms in the case of DAT-1, which is abundant in the striatum and possibly plays a greater role in determining hyperactivity and impulsivity, than working memory deficiencies.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.