Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 56, 2017 - Issue 4
208
Views
2
CrossRef citations to date
0
Altmetric
Invited Paper Series: Ni-Co 2017 Symposium

Novel reagents for iron and sulphur control in medium temperature leaching of sulphide concentrates

ORCID Icon &
Pages 382-392 | Received 13 Apr 2017, Accepted 24 Jul 2017, Published online: 30 Aug 2017
 

ABSTRACT

Hydrometallurgical leaching of sulphide concentrates of copper and nickel at medium temperature (150°C) produces residues that contain sulphur and iron-bearing minerals and phases. During leaching, and depending on various process parameters, iron may be precipitated as hematite, goethite, jarosite or other oxyhydroxides, which may be more or less crystalline. Hematite is the favoured iron precipitate, because it is the most environmentally stable and does not ad/absorb as much copper, nickel or other solution constituents during precipitation. However, the low solubility of iron during the medium temperature processing of sulphide ores can favour the formation of poorly crystalline, nano-scale iron oxide/oxyhydroxide phases. In some cases, these phases have been positively identified as the metastable ferrihydrite, which transforms into iron oxides such as goethite, hematite and magnetite over time. A better understanding of what may help drive this transformation during leaching would ultimately result in lower valuable metal losses and more stable leach residues. Higher acid concentrations result in increased copper extractions and favour the formation of hematite during concentrate leaching, rather than other metastable phases. Furthermore, commercially available water displacement formula ‘WD40®’ and other novel reagent(s) affect Fe precipitation and sulphur chemistry, leading to very different process outcomes such as improved extractions and larger, more easily separated, sulphur particles.

RÉSUMÉ

La lixiviation par hydrométallurgie de concentrés sulfurés de cuivre et de nickel à une température moyenne (150°C) produit des résidus contenant des minéraux et des phases porteurs de soufre et de fer. Lors de la lixiviation, et dépendant des différents paramètres du procédé, le fer peut se précipiter sous forme d’hématite, de géothite, de jarosite ou d’autres oxyhydroxydes, plus ou moins cristallins. L’hématite est le précipité de fer favorisé parce qu’il est le plus stable dans l’environnement et qu’il n’ad/absorbe pas autant de cuivre, de nickel ou d’autres constituants de la solution lors de la précipitation. Cependant, la faible solubilité du fer lors du traitement à température moyenne des minerais sulfurés peut favoriser la formation de phases d’oxyde/oxhydroxyde de fer nanométrique faiblement cristallin. Dans certains cas, on a positivement identifié ces phases comme de la ferrihydrite métastable, qui se transforme en oxydes de fer, comme la géothite, l’hématite et la magnétite, sur une période de temps. Une meilleure compréhension de ce qui pourrait aider à mener cette transformation lors de la lixiviation résulterait ultimement en des pertes plus faibles de métal de valeur et en résidus de lixiviation plus stables. Des concentrations plus élevées d’acide ont pour résultat l’augmentation de l’extraction de cuivre et favorisent la formation d’hématite lors de la lixiviation du concentré, de préférence à d’autres phases métastables. De plus, la formule de déplacement d’eau ″WD40® disponible commercialement et d’autres nouveaux réactants affectent la précipitation du fer et la chimie du soufre, conduisant à des résultats de procédé très différents comme l’extraction améliorée et des particules de soufre plus grosses et séparées plus facilement.

Acknowledgements

The authors are very thankful to Mr. Henry Salomon-de-Friedberg, Retd. Superintendent of New Technologies at Teck’s CESL Hydrometallurgy group, and Dr. Indje Mihaylov, Section Head Hydrometallurgy, Vale Technical Services Limited, for the many useful discussions during the course of this work.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Baseer Abdul is a PhD candidate in the Department of Materials Engineering at The University of British Columbia.

Dr. Edouard Asselin is a Professor in the Department of Materials Engineering at The University of British Columbia and holds a Canada Research Chair in Aqueous Processing of Metals.

Additional information

Funding

Financial support from Teck Resources Limited, VALE Canada and the Natural Sciences and Engineering Research Council of Canada (NSERC) through grant # CRDPJ 436614–12 is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 416.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.