196
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

QUANTITATIVE LASER-INDUCED FLUORESCENCE MEASUREMENTS AND MODELING OF NITRIC OXIDE IN HIGH-PRESSURE (6–15 ATM) COUNTERFLOW DIFFUSION FLAMES

, , &
Pages 1-21 | Received 01 Oct 2002, Accepted 01 Jul 2003, Published online: 11 Aug 2010
 

Abstract

Laser-induced fluorescence (LIF) measurements of NO concentration ([NO]) have been obtained along the centerline of methane–air counterflow diffusion flames at 6 to 15 atm. This study is an extension of our previous work involving measurements of [NO] in similar flames at two to five atm, wherein we had used a counterflow premixed flame for calibration. For the flames studied here, a method based on computed overlap fractions is developed to calibrate [NO] measurements at higher pressures. The linear LIF measurements of [NO], which are corrected for variations in the electronic quenching rate coefficient, are compared with numerical predictions from an opposed-flow flame code utilizing two Gas Research Institute (GRI) chemical kinetic mechanisms (versions 2.11 and 3.0). The effect of radiative heat loss on code predictions is accounted for by using an optically thin radiation model. The revised GRI mechanism (version 3.0) offers a significant improvement in prompt-NO predictions for these flames compared to the older version (2.11), especially at pressures below eight atm. However, a consistent discrepancy remains in the comparisons, particularly at peak NO locations for pressures lower than six atm. The measurements display a continuing trend of decreasing NO concentration with increasing pressure at 6–15 atm as expected for flames dominated by prompt NO. The discrepancy between measurements and predictions decreases with rising pressure so that the revised GRI mechanism predicts [NO] with reasonable accuracy at pressures above six atm.

The experimental component of this research was conducted at Purdue University and was supported by the National Aeronautics and Space Administration (Lewis Research Center), with Ms. Yolanda Hicks as grant monitor.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.