334
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

DYNAMIC BEHAVIOR OF METHANE OXIDATION IN PREMIXED FLOW REACTOR

, , &
Pages 769-783 | Received 01 Oct 2003, Published online: 11 Aug 2010
 

Abstract

Thermokinetic temperature oscillations related to oxidation of small hydrocarbons have not been extensively studied yet, because they occur in a temperature and pressure range not relevant for practical applications. Exploitation of new combustion methodologies such as Mild Combustion also indicated such a phenomenology in small-hydrocarbons oxidation. In this paper, experimental characterization of dynamic behavior occurring in methane mild combustion in premixed flow conditions reported in a previous work was extended and a comparative analysis with data obtained by means of numerical studies was performed. The experimental study was carried out in an atmospheric jet-stirred flow reactor at different inlet temperature and mixture compositions. Several typologies of temperature oscillations were identified whose amplitudes and frequencies strongly depend on the temperature and carbon/oxygen ratio considered. These dynamic behaviors were tentatively explained by means of a rate of production analysis performed by using different methane oxidation kinetic models available in the literature. It was shown that the CH3 recombination path present in the methane oxidation mechanism plays a key role in modulation of temperature oscillations.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.