142
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

MASS SPECTROMETRY, GAS CHROMATOGRAPHY, AND COUPLING GC/MS AS COMPLEMENTARY TECHNIQUES FOR FLAME STRUCTURE ANALYSIS

, , &
Pages 1419-1435 | Received 01 Sep 2003, Accepted 01 Feb 2004, Published online: 11 Aug 2010
 

Abstract

Molecular beam mass spectrometry (MBMS) and gas chromatography (GC) are complementary methods that provide a detailed description of flame structures. MBMS can measure most stable and reactive species but mass overlapping (isomers, species at same m/e), isotopic, and ionic fragmentation interferences can be solved by using GC. To improve species identification, an experimental technique coupling both mass spectrometry and GC is developed. Rich flat premixed ethylene/oxygen/argon flames (φ = 2.25 and 2.50) have been investigated by both methods. After adequate calibrations, mole fraction profiles of several species measured by both techniques agree very well, but for methane, allene, propyne, and benzene, concentrations in burnt gases are somewhat larger when using GC than when using MBMS. C2H6, C2H4O, C3H6, and C3H8, which have similar masses as CH2O, CO2 or C3H8, CH2CO, and CO2, respectively, have been identified, separated, and calibrated by GC, which confirms that GC and MBMS are complementary techniques.

The authors are very grateful to the Ministère de la Région Wallonne (Belgium) for the financial support (grant nos. 98/41928, 99/42084, 00/42884, 01/43257, and 02/43371).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.