262
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of Controlled Auto-Ignition/HCCI Combustion in a Direct Injection Gasoline Engine with Single and Split Fuel Injections

, &
Pages 176-205 | Published online: 14 Dec 2007
 

Abstract

A multi-cycle three-dimensional CFD engine simulation programme has been developed and applied to analyze the Controlled autoignition (CAI) combustion, also known as homogeneous charge compression ignition (HCCI), in a direct injection gasoline engine. CAI operation was achieved through the negative valve overlap method by means of a set of low lift camshafts. In the first part of the paper, the effect of single injection timing on combustion phasing and underlying physical and chemical processes involved was examined through a series of analytical studies using the multi-cycle 3D engine simulation programme. The analyses showed that early injection into the trapped burned gases of a lean-burn mixture during the negative valve overlap period had a large effect on combustion phasing, due to localized heat release and the production of chemically reactive species. As the injection was retarded to the intake stroke, the charge cooling effect tended to slow down the autoignition process. However, further retard of fuel injection to the compression stroke caused the earlier start of main combustion as fuel stratification was produced in the cylinder. In order to optimize the engine performance and engine-out emissions, double injection was investigated by injecting part of the fuel first in the negative valve overlap period and the rest of fuel during the intake or compression strokes. By varying the fueling of each injection, the best engine performance was obtained with the 50/50 fuel injection split ratio, while the lowest total NOx and soot emissions were seen with the optimal split injection ratio of 10/90.

Acknowledgments

The authors acknowledge the financial support by EPSRC (Engineering and Physical Science Research Council).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.