163
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Laser Ignition of Iso-Octane Air Aerosols

, , &
Pages 296-313 | Published online: 11 Jan 2008
 

Abstract

Iso-octane aerosols in air have been ignited with a focused Nd:YAG laser at pressures and temperatures of 100 kPa and 270 K and imaged using schlieren photography. The aerosol was generated using the Wilson cloud chamber technique. The droplet diameter, gas phase equivalence ratio and droplet number density were determined. The input laser energy and overall equivalence ratio were varied. For 270 mJ pulse energies initial breakdown occurred at a number of sites along the laser beam axis. From measurements of the shock wave velocity it was found that energy was not deposited into the sites evenly. At pulse energies of 32 mJ a single ignition site was observed. Overall fuel lean flames were observed to locally extinguish, however both stoichiometric and fuel rich flames were ignited. The minimum ignition energy was found to depend on the likelihood of a droplet existing at the focus of the laser beam.

Notes

*Time taken, t, to reach an area of 1500 mm2.

**Gas phase propane air ignition.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.