85
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Average Vaporisation Rate in Turbulent Subcritical Two-Phase Flow

&
Pages 975-996 | Received 19 Dec 2007, Published online: 09 May 2008
 

Abstract

This work considers alternative expressions for turbulent evaporation rate used in the framework of an entirely Eulerian model based on a transport equation for the average liquid surface area. Commonly employed expressions for vaporisation rate derived from Spalding-Godsave theory fail to account for vaporisation enhancement induced by turbulence; moreover, they do not describe experimentally observed fact that the pressure affects vaporisation rate differently in a turbulent and a laminar flow. To address these shortcomings, an alternative formula for the vaporisation rate is proposed based on an assumption that the vaporisation rate is governed by a small-scale turbulence. This model is assessed for a range of pressure and temperature conditions, using experiments of Brandt et al. (Citation1997a) performed in a premix duct with a flat-bed atomiser as the test case. Turbulence intensities and scales in the chosen test case are typical for a modern gas-turbine combustion chamber. This new expression results in prediction of evaporation rate and SMD in a good agreement with experimental results.

The authors thank Dr. M. Brandt for kindly providing the paper Brandt et al. (1997b).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.