99
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Characteristics of Pyrolysis and Combustion of Polymers in Stagnation-Point Flow for Preheated and Diluted Air with H2O and CO2

, , &
Pages 159-175 | Published online: 29 Dec 2008
 

Abstract

Combustion experiments on polypropylene (PP) and polyethylene terephethalate (PET) in stagnation-point flow were performed to investigate the fundamental characteristics of these polymers in high-temperature air combustion (HiTAC). Numerical study was also performed to estimate the regression rate and to determine the kinetic parameter of pyrolysis. In the experiments on PP combustion, extinction limits and sooting limits were found to be extended when highly preheated air was used. In the case of H2O and CO2 dilutions, the dilution enhanced regression rates at low stretch rates. In the case of PET combustion, results indicated that regression rates depended on the production rate of char. The kinetic parameters of PP pyrolysis under the combustion conditions were estimated using a new method in which experiments and numerical simulations were combined. The regression rates calculated using the kinetic parameters obtained in the present study were in good agreement with those of the experiments in contrast with the numerical results using the kinetic parameters obtained using the previously reported thermal gravimetric analysis (TGA).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.