176
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Computed Flammability Limits and Spreading Rates of Upward Flame Spread over a Thin Solid in Low-Speed Buoyant Flows

Pages 379-395 | Received 24 Apr 2008, Accepted 30 Sep 2008, Published online: 19 Feb 2009
 

Abstract

Upward flame spread over a thin solid in low-speed buoyant flows was studied numerically with a previous established two-dimensional model. In natural convective environments, steady flame spreading was achieved in partial gravity and reduced pressure. The effects of environmental parameters, including gravity level, ambient pressure, and oxygen percentage, on flame structures, flame spread rates, and flammability limits were investigated, especially for the pressure effects, as it was not previously examined in detail. At reduced pressure, flame is shorter but thicker. Flame length and upward flame spread rates increased with pressure to a power larger than unity. The spreading rates also increased linearly with gravity, with a slope depending on pressure. The extinction boundary using pressure and gravity level as coordinates were constructed and compared with limited available experimental results for the buoyant, reduced pressure flames.

The author gratefully acknowledges the support and help of NSC, Taiwan grants NSC93-2212-E-182-007 and NSC95-2221-E-182-052, and Chang Gung University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.