298
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Experimental Investigations on Detonation Initiation in a Kerosene-Oxygen Pulse Detonation Rocket Engine

, , &
Pages 417-432 | Received 10 Apr 2008, Accepted 23 Oct 2008, Published online: 09 Jun 2010
 

Abstract

A series of experiments was carried out on a pulse detonation rocket engine (PDRE) running on a liquid kerosene-oxygen mixture to investigate the indirect detonation initiation. The experiments investigating the effect of Shchelkin spiral on the deflagration-to-detonation transition (DDT) process demonstrated that all spirals were able to enhance flame acceleration to some extent, but successful DDT was achieved only when the length of spiral was increased to six times of the inner diameter of detonation tube (6D). For the model with the spiral length of 6D, the DDT run-up distance was about 0.5 m (10D) and the sum of ignition delay and DDT run-up time was around 0.6 ms, which only occupied 0.6% of the whole cycle (100 ms). It implied that ignition delay and DDT run-up time were not the key factors of limiting the increase of frequency in a kerosene/oxygen PDRE. In addition, an experiment on detonation initiation by a flame jet through an orifice plate was successfully conducted on the multi-cycle PDRE. For detonation tubes with the orifice plate mounted 10 cm and 20 cm away from the thrust wall, the DDT run-up distance obtained was approximately 0.30 m (6D) and 0.2 m (4D). Compared with the spiral configuration, the DDT run-up distance was shortened by 40% and 60% in the two cases, respectively. The results implied that a rapid initiation of detonation could be achieved in a shorter distance with the approach of the flame jet ignition.

This work was supported by National Natural Science Foundation of China (50336030), the Program for New Century Excellent Talents in University (NCET-04-0960) and the Doctorate Foundation of Northwestern Polytechnical University (CX200709).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.