1,686
Views
163
CrossRef citations to date
0
Altmetric
Original Articles

Scalar Dissipation Rate Modeling and its Validation

, , &
Pages 518-535 | Received 10 Jun 2008, Accepted 28 Oct 2008, Published online: 09 Jun 2010
 

Abstract

A simple algebraic model for the Favre averaged scalar dissipation rate, c, in high Damkohler number premixed flames is obtained from its transport equation by balancing the leading order terms. Recently proposed models for the dominant terms in the transport equation are revisited and revised. The algebraic model incorporates essential physics of turbulent premixed flames, namely, dilatation rate, its influence on turbulence-scalar interaction, chemical reactions, and dissipation processes. A realizability analysis is carried out to show that the algebraic model is always unconditionally realizable. The model predictions of dissipation rate are compared with the DNS results, and the agreement is good over a range of flame conditions. Application of the Kolmogorov-Petrovski-Piskunov (KPP) theorem along with the above algebraic model gives an expression for the turbulent flame speed. Its prediction compares well with a range of experimental data with no modifications to the model constants.

The support of EPSRC and Rolls–Royce plc. is acknowledged. HK acknowledges the support of Cambridge Commonwealth Trust. The help of Mr. Shiwaku and Dr. Tanahashi of Tokyo Institute of Technology in DNS data transfer is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.