82
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

CO/NOx Emissions of Strongly Pulsed Jet Diffusion Flames

&
Pages 536-554 | Received 14 Dec 2007, Accepted 28 Oct 2008, Published online: 09 Jun 2010
 

Abstract

The CO and NOX emissions of strongly pulsed, turbulent diffusion flames were examined experimentally in a co-flow combustor. Video imaging was performed and time-averaged emissions were measured at the combustor exit and near the visible flame tip. Both the case of a fixed fuel injection velocity during the injection interval and a constant fuelling rate were studied for jet Reynolds numbers ranging from 5,000 to 15,000. For fixed injection velocity, maximum emission indices of CO occurred for compact, isolated flame puffs. CO decreased substantially with decreasing jet-off time as the flame puff interaction increased. The pulsed flames had lower NOX than the steady flames, particularly for the case of isolated flame structures. Similar trends in NO formation were seen for constant fueling rate. The CO emissions were, however, considerably different, largely due to a significant impact of the Reynolds number. Radial emissions profiles suggest an improved fuel/air mixing for shorter jet-off times and longer jet-on times. The correlation of CO/NO emissions with a global flame residence time is discussed.

This work was supported by the National Aeronautics and Space Administration under Cooperative Agreement NNC04AA37A. The help of Jennifer Tsai and Ying-Hao Liao for some of the data analysis is also appreciated.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.