135
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Numerical and Experimental Investigation of Detonation Initiation in Profiled Tubes

, , , &
Pages 1735-1746 | Received 15 Oct 2009, Accepted 02 Apr 2010, Published online: 27 Oct 2010
 

Abstract

Detonation initiation in a tube with parabolic contraction and conical expansion was investigated numerically and experimentally. The optimized geometry of conical expansion with sine-shaped wall is proposed. The generalized diagram in the form of detonation curves at the contraction slope angle versus incident shock Mach number plane is presented. For solving the governing Euler equations, the numerical method based on finite volume approach with Godunov flux approximation adapted for multiprocessor systems is used. It has been shown experimentally that the parabolic contraction and conical expansion ensure shock-to-detonation transition in a stoichiometric propane-air mixture under normal conditions at a very low minimal incident shock wave velocity of 680 ± 20 m/s, which approximately corresponds to a Mach number of 2. This result is important for novel jet propulsion systems with detonative burning of fuel-pulse detonation engines.

ACKNOWLEDGMENTS

This work was supported by Russian Foundation for Basic Research (grant 08–08-00068) and Special Purpose Program of Russian Federation, Scientific and Educational Human Resources of Innovative Russia (contracts P359 and P502).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.