210
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Multicycle Detonation Investigation by Emission–Absorption-Based Temperature Diagnostics

, , &
Pages 62-74 | Received 17 Mar 2010, Accepted 16 Jun 2010, Published online: 24 Nov 2010
 

Abstract

In order to analyze and improve the performance of pulse detonation engines (PDEs), detailed detonation processes deserve much more attention. However, the measurements of characteristic parameters are difficult because the flow field in detonation is unsteady, with high pressure and high temperature. A new device based on the emission–absorption principle is developed specially for measuring pulsed temperature in a PDE plume. Experimental results show that the measured pulsed temperature can diagnose the PDE operation, such as multicycle detonation wave formation, operation frequency, and overfilling process. Effects of PDE configuration, operation frequency, and fuel on PDE plume temperature were investigated experimentally. The plume temperature increases with operation frequency. The PDRE average peak plume temperature is much higher than direct-connected PDEs and air-breathing PDEs. The newly developed plume temperature measurement method is simple, cheap, and easy to operate, which provides a useful tool to diagnose PDE multicycle operation and interaction of external flow field and PDE operation.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (50906072, 50976094).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.