8,208
Views
73
CrossRef citations to date
0
Altmetric
Original Articles

Experimental Study on the Effect of Swirler Geometry and Swirl Number on Flame Describing Functions

, , &
Pages 704-717 | Received 11 Aug 2010, Accepted 03 Nov 2010, Published online: 04 Apr 2011
 

Abstract

This paper deals with the response of swirling flames submitted to acoustic velocity disturbances when the rotation of the flow is produced by an axial or a radial swirler. The objective is to compare responses obtained in these two cases. The response is characterized in terms of the flame describing function (FDF), which generalizes the classical flame transfer function concept by considering not only the frequency but also the amplitude of the velocity disturbances. Results indicate that for both types of swirlers, the dynamics is essentially similar for the gains and the phases of the FDF. It is also found that the swirl number value markedly influences the gain response. The characteristic shape of the FDF, with a local minimum and maximum, are found in both cases and these features correspond to mechanisms already described previously: swirl number fluctuations and vortex rollup of the flame. Swirl number fluctuations are induced by the interaction of the incident acoustic disturbances with the swirler. This generates in the two cases a transmitted acoustic wave and a convective vorticity wave. This last wave is characterized by azimuthal velocity perturbations. The mode conversion process giving rise to the latter type of disturbance was already demonstrated in the case of an axial swirler. It is here examined in the radial swirler geometry. It is shown that the mode conversion processes in the two geometries are quite similar and that they produce similar effects on the flame dynamics and response.

ACKNOWLEDGMENTS

This study is part of the MICCA project supported by the Agence Nationale de la Recherche (contract number ANR-08-BLAN-0027-01). The authors would like to thank C. Hirsch from TU München for fruitful discussions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.