393
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Small-Scale HCCI Engine Operation

&
Pages 928-946 | Received 21 Jun 2010, Accepted 07 Feb 2011, Published online: 24 May 2011
 

Abstract

Homogeneous Charge Compression Ignition (HCCI) combustion in a small-scale engine (25 cc) was experimentally examined. Historically, HCCI combustion has been studied in engines sized for passenger vehicles and trucks (approximately 500 cc and larger). HCCI combustion in large-scale engines is characterized by higher efficiency than SI and CI combustion. High rates of heat flux, due to large surface area to volume ratio and engine body material, initially prevented the small-scale engine from operating in HCCI mode. The high level of heat transfer was overcome and sustained small-scale HCCI operation was achieved with n-heptane fuel. Large-scale HCCI engines utilize ultralow equivalence ratios to achieve high efficiencies. The small-scale HCCI engine could not operate with equivalence ratios lower than 0.73. Performance characteristics including power, efficiency, and NOx emissions of the small-scale HCCI engine were poorer than when operated in SI mode. Recommendations to overcome high rates of heat flux and increase small-scale HCCI engine efficiency are presented.

ACKNOWLEDGMENTS

The financial support for this project from UCI is gratefully acknowledged. While many faculty, staff, and students generously lent their time and expertise, the assistance provided by Robert Smith Jr., Jae Lim, John Garman, and Sunny Karnani is acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.