297
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

A Spray-Interactive Flamelet Model for Direct Injection Engine Combustion

, &
Pages 469-488 | Received 01 Dec 2011, Accepted 02 Dec 2011, Published online: 13 Mar 2012
 

Abstract

Toward higher efficiency and lower emissions, modern direct injection (DI) engines employ various injection strategies. This leads to more complex in-cylinder spray evaporation and combustion processes, requiring more comprehensive modeling approaches. In this study, an extended flamelet model is developed to describe DI engine combustion over a wide range of injection timings. A key feature of the model is to fully incorporate the interaction between spray evaporation and gas-phase combustion. Additional source terms representing the effect of evaporation were incorporated in the flamelet equation solved in the reactive space. A simple test problem demonstrated that the new formulation successfully accounts for the history of the spray evaporation. The extended formulation was implemented into a multidimensional computational fluid dynamics (CFD) code KIVA3v for full cycle engine simulation. The modeling results were successfully validated against available experimental data obtained from a rapid compression facility.

ACKNOWLEDGMENT

This work was sponsored by the DOE University Consortium on LTC Engines, Project Contract No. DE-FC26-06NT42629.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.