221
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Determination of Woody Fuel Flame Properties by Means of Emission Spectroscopy Using a Genetic Algorithm

, , , , , , & show all
Pages 579-599 | Received 29 May 2012, Accepted 13 Sep 2012, Published online: 29 Mar 2013
 

Abstract

Because radiation from flames is often the dominant mechanism for wildfire spread, detailed information on flame properties is required. The proposed procedure combines a spectrally resolved radiation model for simulating the line-of-sight infrared emission intensity and spectroscopy data and uses a genetic algorithm (GA) to determine a set of flame properties, allowing optimal agreement between model and outdoor experiments. GA calibration and sensitivity analysis were conducted using well-defined reference flames. The combined GA/radiation model was used with emission data to estimate the effective properties of flames from the combustion of woody fuel beds from 0.5 to 4 m in thickness. Experimental results show that the contribution of soot particles to flame emission increases with flame thickness. The GA was found to be robust and efficient in providing relevant flame properties from line-of-sight intensities on the infrared spectrum of radiation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.