258
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Nearly Pure Aluminum Powders with Modified Protective Surface

, &
Pages 1360-1377 | Received 21 Jan 2013, Accepted 17 Apr 2013, Published online: 12 Aug 2013
 

Abstract

The thermodynamically predicted benefits of aluminum combustion are rarely achieved because of extended ignition delays associated with protective alumina layer, which is always present on the aluminum surface. This effort focuses on adjusting aluminum combustion dynamics by modifying its surface and structure. Aluminum is cryo-milled with cyclooctane. The prepared material consists of micron-sized, equiaxial, nearly pure Al particles; their external surface and crystal grains are coated with a cyclooctane-modified layer with properties significantly different from those of regular alumina. The material's oxidation kinetics, as observed from thermo-analytical measurements, is different from that of pure aluminum. The powder ignites at substantially reduced temperatures, and produces shorter ignition delays and higher aerosol burn rates compared to a regular spherical Al powder with similar particle sizes. In air, single particles of the prepared composite material burn longer than pure Al and produce reduced molecular AlO emission, but generate nearly the same temperature as pure Al. In the combustion products of an air-acetylene flame, composite particles burn faster than pure Al.

ACKNOWLEDGMENT

This work was supported by Defense Threat Reduction Agency.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.