158
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Lean Flame Dynamics Through a 2D Lattice of Alkane Droplets in Air

, &
Pages 103-119 | Received 25 Jun 2013, Accepted 19 Sep 2013, Published online: 21 Jan 2014
 

Abstract

Flame propagation along a 1-D array or through a 2D-lattice of fuel droplets has long been suggested to schematize spray-flames spreading in a two-phase premixture. The present numerical work considers the fresh aerosol as a system of individual alkane droplets initially located at the nodes of a face-centered 2D-lattice, surrounded by a variable mixture of alkane and air, in which the droplets can move. The main parameters of the study are s, the lattice path, and ϕ L , the liquid loading, which are both varied, whereas ϕ T , the overall equivalence ratio, is maintained lean (ϕ T  = 0.85). Main results are as follows: (a) For a large lattice path (or when the droplets are large enough), spreading occurs in two stages: a short time of combustion followed by a long time lag of vaporization and a classical triple flame (with a very short rich wing) spreads around the droplets; (b) spray-flame speed decreases as liquid loading increases; (c) an elementary model invoking both propagation stages allows us to interpret flame speed as a function of the sole parameter s × ϕ L ; (d) when the lattice path shortens, the spray-flame exhibits a pattern that continuously goes from this situation to the plane flame front.

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/gcst.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.