1,147
Views
49
CrossRef citations to date
0
Altmetric
Original Articles

A Comprehensive Mathematical Model for Biomass Combustion

&
Pages 574-593 | Received 15 May 2013, Accepted 19 Nov 2013, Published online: 23 Apr 2014
 

Abstract

This article reports on an investigation of a comprehensive mathematical model for biomass combustion within the one-dimensional model framework. The model takes into account different thermochemical processes, e.g., moisture evaporation, pyrolysis, heterogeneous char reactions, intra-particle heat and mass transfer, and changes in thermo-physical properties. Different approaches to model the various processes involved in the thermochemical conversion of biomass are discussed, and a sensitivity study is carried out to investigate the performance of sub-models for the drying process. The comprehensive model is used to investigate the effect of moisture diffusion and vapor condensation inside the particle pores. The model is evaluated under different conditions, and satisfactory comparison of the model results with experimental data and model results from other researchers is observed.

Published as part of the Eighth Mediterranean Combustion Symposium Special Issue with Guest Editors Nevin Selçuk, Federico Beretta, Mohy S. Mansour, and Andrea d’Anna.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.