274
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Soot Formation in Unstrained Diffusion Flames

, , , &
Pages 577-593 | Received 07 Aug 2013, Accepted 21 Aug 2014, Published online: 27 Oct 2014
 

Abstract

The formation of soot particles has been investigated in CH4/O2 diffusion flames using a unique burner design, which allows the creation of a nearly unstrained planar reaction sheet. Spatially resolved soot volume fractions were obtained using laser-induced incandescence. These soot measurements and the sooting limits were obtained as a function of bulk flow across the flame and mixture strength. Samples were collected using thermophoretic sampling and analyzed using electron microscopy, revealing a broad range of microstructures including particles with unusually large primary diameters and carbon nanotubes. A theoretical model is presented, which confirms that under certain conditions the 1D nature of the flow field of the burner and the strong adverse temperature gradient on the fuel side of the flame result in the soot particles being held in place by thermophoretic forces and allowed to grow for very long time periods. Some of these so-called super aggregates reached sizes of tens of microns and became visible to the naked eye in the soot layer.

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/gcst.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.