314
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Lifting and Splitting of Nonpremixed Methane/Air Flames Due to Reactant Preheating

, , , , &
Pages 1937-1958 | Received 24 Oct 2014, Accepted 04 Jun 2015, Published online: 02 Oct 2015
 

Abstract

In order to assess the impact of initial reactant temperature on the occurrence of local extinction (LE) and the subsequent lifting process of non-premixed attached flames with increasing fuel injection velocity, hydroxyl radical planar laser-induced fluorescence (OH-PLIF) and high-speed CH*-chemiluminescence visualizations were conducted in a methane/air jet-flame, with preheating up to 1000 K. LE occurrence probability increases when approaching lifting, and the preheating level (Tox,ref) affects the probability density function (PDF) shape of LE axial origin. At low Tox,ref, partial lifting events occur near the burner lip, eventually leading the flame to lift directly from the very flame base. At higher Tox,ref, partial lifting events no longer occur, and LE is mostly witnessed in the flame breakpoint zone (axially from 1 to 3 jet diameters), resulting in a breakpoint lifting process. For very high Tox,ref (1000 K), local extinctions become widespread in the breakpoint zone so that a stable split flame is achieved prior to the lifted regime.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.