387
Views
6
CrossRef citations to date
0
Altmetric
Articles

Effect of Acoustic Excitation on Lean Blowoff in Turbulent Premixed Bluff Body Flames

, , , &
Pages 55-76 | Received 24 Nov 2014, Accepted 31 Jul 2015, Published online: 16 Nov 2015
 

ABSTRACT

The lean blowoff characteristics of a premixed air-methane flame were investigated in a ducted combustor with a bluff body according to acoustic excitation. The blowoff equivalence ratio increases with the Reynolds number and changes depending on the extent of the recirculation zone. Using the relation between the Damköhler number and the Reynolds number, it was confirmed that the flow velocity at the downstream tip of the bluff body and the laminar flame speed are decisive blowoff factors. Although a periodic flame hole appeared far from the blowoff only with acoustic excitation, the blowoff observed by OH radical chemiluminescence occurred using a similar process regardless of the excitation. The recirculation zone collapses and the flame becomes small when it is close to the blowoff. Then, the flame is locally extinguished downstream from the bluff body and the recirculation zone completely collapses. Eventually, the unburned gas does not ignite and the flame is extinguished. The blowoff equivalence ratio rapidly increases at specific acoustic excitation frequencies. This was investigated using proper orthogonal decomposition analysis, the two-microphone method, and phase-lock particle imaging velocimetry measurement. Resonance occurs when the excitation frequency approaches the harmonic frequency of the combustor and it increases the velocity fluctuation in the combustor and the infiltration velocity of the unburned gas in the shear layer of the recirculation zone. Consequently, because the burning velocity must have a larger value corresponding to the enhanced mixture velocity for a sustained flame, the blowoff occurs at a higher equivalence ratio.

Additional information

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2015R1A2A2A010043), the New & Renewable Energy Core Technology Program (201195101001C) of the KETEP grant funded by the MOTIE and Advanced Research Center Program (NRF-2013R1A5A1073861) through the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) contracted through Advanced Space Propulsion Research Center at Seoul National University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.