762
Views
36
CrossRef citations to date
0
Altmetric
Articles

Comparison of Combustion Characteristics of Magnesium and Aluminum Powders

, , , , , , & show all
Pages 1857-1877 | Received 30 Oct 2015, Accepted 07 Apr 2016, Published online: 28 Oct 2016
 

ABSTRACT

This work presents an experimental study of the combustion characteristics of micron-sized aluminum and magnesium powders under constant volume combustion experiments. Burning velocities were estimated from the measured pressure traces using both a simplified model for combustion on closed spherical bombs and a semi-empirical correlation for dust explosions, and compared to previous literature. Flame temperatures were measured by bi-color pyrometry and indicate that, for aluminum powders with a mean particle diameter smaller than 12 μm, the flame moves closer to the particle’s surface. However, emission spectra obtained during combustion indicate that vapor-phase oxidation exists for all studied powders. Analysis of the combustion products further supported the presence of a vapor-phase reaction. For aluminum, the residue is composed by partially crystallized nanometric spheres as fine as 200 nm. MgO was found in crystallized cubic structures of different sizes, the finest ones also about 200 nm.

Acknowledgments

This work was conducted as part of the OpenLab-Energetics collaboration between Groupe PSA and PRISME Laboratory.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.