379
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Combustion of Boron and Boron-Containing Reactive Composites in Laminar and Turbulent Air Flows

, &
Pages 683-697 | Received 27 May 2016, Accepted 06 Oct 2016, Published online: 12 Oct 2016
 

ABSTRACT

Combustion of boron and reactive composite powders of Al·B·I2 and Mg·B·I2 in air is characterized experimentally. Composite materials are prepared by mechanical milling of elemental starting materials. Particle size distributions for each material and fractal dimensions of the particle agglomerates are characterized using electron microscopy. All powders are injected into a CO2 laser beam and ignited. A turbulent flow pattern is generated just above the laser beam using a cylindrical air knife. Combustion of individual particles is characterized optically in laminar and turbulent flows. Measured particle size distributions are correlated with the measured distributions of the burn times for each powder. Thus, particle burn times are obtained as a function of the particle size. For boron, the exponent of the power law describing the effect of particle size on its burn time is close to 1 for all flow conditions. Temperatures of the burning particles are also measured. It is observed that both boron particle burn times and temperatures are reduced markedly in turbulent flows. For laminar flow, two stages in the produced emission patterns are identified for burning boron particles. The first stage, accompanied by higher temperatures, is suppressed in the turbulent flow. Conversely, neither burn times nor temperatures are affected substantially by the flow conditions for both Al·B·I2 and Mg·B·I2 powders. For Al·B·I2 and Mg·B·I2 composite powders the exponents of the power law describing the effect of particle size on its burn time are close to 1.7 and 2, respectively. Combustion temperatures in air vary around 1800 K and 2300 K for Al·B·I2 and Mg·B·I2 powders, respectively.

Funding

This work was supported by the US Defense Threat Reduction Agency.

Additional information

Funding

This work was supported by the US Defense Threat Reduction Agency.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.