367
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and numerical study of premixed flame penetration and propagation in multichannel system

, , , , , & show all
Pages 1023-1040 | Received 28 Sep 2017, Accepted 02 Jan 2018, Published online: 26 Feb 2018
 

ABSTRACT

Experimental and numerical results on premixed flame penetration and subsequent propagation in a multichannel burner are presented. The burner consists of the set of planar straight quartz channels which transverse sizes can be varied. It is found that, depending on mixture flow rate, equivalence ratio and channels transverse sizes a big variety of combustion regimes can be observed. These regimes include burner-stabilized flames, upstream propagating flames, and flames stabilized under the burner external surface. The placement of different combustion regimes in equivalence ratio/flow rate plane is plotted by means of experimental and numerical studies. In wide range of parameters, the flame pulsations consisting of repetitive stages of flame ignition, upstream propagation, and quenching take place. Results of numerical simulations obtained in the framework of simplified thermal-diffusion model are found to be in a good qualitative agreement with experimental data and allow to explain experimental findings.

Additional information

Funding

The study was supported financially by the Ministry of Education and Science of the Russian Federation (project RFMEFI58417X0031).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.