351
Views
7
CrossRef citations to date
0
Altmetric
Articles

Unsteady chemical kinetics behavior of AP/HTPB propellant with micro-scale model

, &
Pages 2164-2187 | Received 27 Nov 2017, Accepted 26 Jun 2018, Published online: 26 Jul 2018
 

ABSTRACT

The heterogeneous AP/HTPB propellant is a mixture of periodical units comprised of two AP (ammonium perchlorate, NH4ClO4) particles separated by a HTPB (hydroxyl-terminated polybutadiene) layer. So, the flame structure and the respond of the burning rate of such a material is resulted by an incredibly complex set of concurrent reactions taking place in the gas, liquid, and solid phases of a heterogeneous mixture, especially under unstable environment conditions. This article starts with a one-dimensional unstable chemical kinetics model to fix the respond of the burning rate to unstable conditions. Then, a two-dimensional micro-scale combustion model of ‘sandwich’ AP/HTPB propellant under unsteady-state conditions is explored to investigate the characteristic of microflame structure of this material and parameter distributions. It is demonstrated that for the periodic sandwich geometry a decrease in the environment pressure from 3 MPa to 2 MPa can sharply decrease the transient burning rate that is lower than the steady-state burning rate under corresponding pressure. Moreover, the temperature of the burning surface decreases when the depressurization process proceeds and the extinguishment will be considered to occur as the temperature of the burning surface is less than critical extinguishment temperature of 700 K. It is obtained from the two-dimensional, unsteady-state model that, when the depressurization rate is higher, the temperature of the burning surface decreases more sharply and the extinguishment phenomenon may occur.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work is supported by the Fundamental Research Funds for the Central Universities (No. 30918011324) and Foundation Research Project of Jiangsu Province (The Natural Science Fund No. BK20150765).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.