126
Views
0
CrossRef citations to date
0
Altmetric
Articles

Oscillatory Burner-Attached Diffusion Flame in a Viscous Vortex

&
Pages 2188-2202 | Received 19 Apr 2018, Accepted 02 Jul 2018, Published online: 30 Jul 2018
 

ABSTRACT

A method for mathematically solving the oscillatory infinite reaction rate diffusion flame is extended to the case where the oscillating convective coflow is either inside of, or adjacent to, a viscous vortex. The neglect of streamwise diffusion coupled with the restriction to infinite rate chemistry produces a Burke-Schumann boundary layer flame. The mathematical transformation, which does not require a priori restriction to small coflow oscillations, renders the transient oscillatory problem equivalent to a steady-state problem that can be solved mathematically and numerically evaluated to a high degree of accuracy. Flow fluctuations that are large fractions of the initial flow field are described exactly. Features of the flame response are examined without recourse to detailed time-dependent numerical simulations. There is no need to perform any small-perturbation analyses. The method is applied to examine the influences of the bulk inflow speed, the bulk inflow oscillation rate, and the interaction of the inflow and its oscillation rate with the viscous vortex.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.