306
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Analysis of Wall–flame Interaction in Laminar Non-premixed Combustion

, , , , &
Pages 337-350 | Received 18 Jan 2019, Accepted 07 Oct 2019, Published online: 16 Oct 2019
 

ABSTRACT

The study is aimed at demonstrating a methodology for the time-scale characterization of the chemistry-wall-heat-transfer interaction. The driving chemical time-scale is estimated by means of the tangential stretching rate, and a proper thermal timescale for the temperature-time variation due to wall heat flux is presented. A thermal Damköhler number, Dath, is proposed as the ratio of the two. The methodology is applied on a prototypical laminar methane-oxygen diffusion flame impinging on an isothermal cold wall. Non-adiabatic effects are described qualitatively and a CSP-TSR analysis is performed to obtain topological information and physical insights. The thermal Damköhler number field is computed and discussed to highlight the interplay between chemical and diffusive processes and to a-priori assess the accuracy of the steady laminar flamelet assumption under non-adiabatic conditions.

Acknowledgments

The authors acknowledge the support of Italian Ministry of University and Research (MIUR), as well as that provided by KAUST 1975-03 CCF and OSR-2018-CARF-1975-03 Subaward Agreement.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.