465
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Metallic Additives for Solid-Fuel Propulsion Applications

, &
Pages 1279-1298 | Received 05 Jun 2021, Accepted 05 Oct 2021, Published online: 24 Oct 2021
 

ABSTRACT

Hybrid rockets have distinct advantages over their pure solid or liquid propellant counterparts, and their performance can be improved by inclusion of metal additives. Several metallic additives (micro-Al, micro-Ti, micro-Mg, micro-Zr, nano-Al, nano-B, and Mg-coated nano-B) were selected as potential candidates for hybrid rocket applications and characterized by applicable microscopy techniques. The regression rates and combustion efficiencies of plain HTPB and HTPB loaded with each additive at various concentrations (10%, 20%, and 30% by mass) burning in GOX were evaluated at moderate oxidizer mass fluxes (10–150 kg/m2-s) and pressures ( 0.86 MPa, 125 psia). In general, the inclusion of any of the metallic additives led to a reduction in the regression rate and did not significantly change the combustion efficiency. The only exceptions were fuel formulations containing micro-Zr, which yielded a moderate (10–20%) increase in the regression rate at a concentration of 10%. The observed trends were more prevalent at higher oxidizer mass fluxes and higher additive loadings. The reductions in regression rate were attributed to heat transfer blocking effects derived from accumulation of additive particles on the fuel surface layer. These phenomena were especially prevalent in highly loaded fuel formulations containing the nano-additives that exhibited unstable combustion and periodic surface-layer shedding. Zirconium appears to be the best metallic additive available since it can yield the highest theoretical density-specific impulse under the lowest O/F operation ratio without resulting in decrements to overall performance. Notably, combustion efficiency data for all fuel formulations were well correlated to the combustion residence time, and high combustion efficiencies (>95%) were achievable when a satisfactory residence time (~75 ms) was realized.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplementary material

Supplemental data for this article can be accessed on the publisher’s website.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.