123
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Paul Andrews Libby Contribution to Zone-Conditioned Average Transport Equations in Intermittent Turbulent Flows

Pages 3853-3874 | Received 08 Nov 2021, Accepted 14 Jan 2022, Published online: 18 Apr 2022
 

ABSTRACT

Professor Paul A. Libby has made lasting contributions to the theory and modeling of turbulent premixed flames. A less known subject of his research relates to the conditioning of the local and instantaneous Navier-Stokes equations for either the turbulent or the irrotational flow regions separated by a thin interface. He postulated an evolution equation for the intermittency function, a generalized function introduced by experimentalists in the decades of 1960 and 1970, which is unity in the vorticity-containing turbulent flow and zero in the surrounding irrotational flow. This intermittency function equation allowed the derivation of transport equations for average variables conditioned either to the turbulent or the vorticity-free regions. Paul A. Libby formalism is explained in this paper. Further research triggered by Libby’s seminal work is then reported. An exact expression is obtained for his “intermittency creation” term, which allows a simple physical interpretation of the entrainment and zone interactions. This methodology is applied to an intermittent scalar in a turbulent flow of a variable density fluid. Various types of intermittent flows with zonal discrimination, based on vorticity, scalar and scalar-gradient criteria, are presented. The analogy of turbulent/nonturbulent interfaces with propagating turbulent premixed flames is remarked.

Disclosure statement

No potential conflict of interest was reported by the author.

References

  • Aliod, R., and C. Dopazo. 1990. A statistically conditioned averaging formalism for deriving two-phase flow equations. Part. Part. System Charact 7 (1–4):191–202. doi:10.1002/ppsc.19900070133.
  • Antonia, R. A. 1972. Conditionally sampled measurements near the outer edge of a turbulent boundary layer. J. Fluid Mech 56 (1):1–18. doi:10.1017/S0022112072002149.
  • Bilger, R. W. 1993. Conditional moment methods for turbulent reacting flow. Phys. Fluids 5 (2):436–44. doi:10.1063/1.858867.
  • Bilger, R. W., R. A. Antonia, and K. R. Sreenivasan. 1976. Determination of intermittency from the probability density function of a passive scalar. Phys. Fluids 19 (10):1471–74. doi:10.1063/1.861348.
  • Borrell, G., and J. Jimenez. 2016. Properties of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech 801:554–96. doi:10.1017/jfm.2016.430.
  • Bray, K. N. C., P. A. Libby, G. Masuya, and J. B. Moss. 1981. Turbulence production in premixed turbulent flames. Combust. Sci. Technol 25 (3–4):127–40. doi:10.1080/00102208108547512.
  • Bray, K. N. C., and J. B. Moss. 1977. A unified statistical model of the premixed turbulent flame, Acta Astron. 4:291–320.
  • Brearley, P., U. Ahmed, N. Chakraborty, and A. Lipatnikov. 2019. Statistical behaviors of conditioned two-point second-order structure functions in turbulent premixed flames in different combustion regimes. Phys. Fluids 31 (11):115109. doi:10.1063/1.5124143.
  • Byggstoyl, S., and W. Kollmann. 1981. Closure model for intermittent turbulent flows. Int. J. Heat Mass Transfer 24 (11):1811–22. doi:10.1016/0017-9310(81)90147-2.
  • Chakarborty, N., and M. Klein. 2009. Effects of global flame curvature on surface density function transport in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst 32 (1):1435–43. doi:10.1016/j.proci.2008.06.022.
  • Chakraborty, N. 2021. Influence of thermal expansion on fluid dynamics of turbulent premixed combustion and its modelling implications. J. Flow Turb. Combust 106 (3):753–848. doi:10.1007/s10494-020-00237-8.
  • Chakraborty, N., and R. S. Cant. 2007. A priori analysis of the curvature and propagation terms of the flame surface density transport equation for large eddy simulation. Phys. Fluids 19 (10):105101. doi:10.1063/1.2772326.
  • Chakraborty, N., E. R. Hawkes, J. H. Chen, and R. S. Cant. 2008. The effect of strain rate and curvature on surface density function transport in turbulent premixed methane-air and hydrogen-air flames: A comparative study. Combust. Flame 154 (1–2):259–80. doi:10.1016/j.combustflame.2008.03.015.
  • Chakraborty, N., and M. Klein. 2008. A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation. Physics of Fluids. 20 (8):085108. doi:10.1063/1.2969474.
  • Chakraborty, N., M. Klein, and H. G. Im. 2020. A comparison of entrainment velocity and displacement speed statistics in different regimes of turbulent premixed combustion. Proc. Combust. Inst. doi:10.1016/j.proci.2020.06.241.
  • Chevray, R., and N. K. Tutu. 1978. Intermittency and preferential transport of heat in a round jet. J. Fluid Mech 88 (1):133–60. doi:10.1017/S0022112078002025.
  • Cifuentes, L., A. Kempf, and C. Dopazo. 2019. Local entrainment velocity in a premixed turbulent annular jet flame. Proc. Combust. Inst 37 (2):2493–501. doi:10.1016/j.proci.2018.07.031.
  • Corrsin, S., (1943). Investigation of flow in an axially symmetric heated jet of air, NACA W-94.
  • Corrsin, S., and A. L. Kistler, (1955). Free-Stream boundaries of turbulent flows, NACA Rept. N° 1244.
  • da Silva, C. B., J. C. R. Hunt, I. Eames, and J. Westerweel. 2014. Interfacial layers between regions of different turbulent intensity. Annu. Rev. Fluid Mech 46 (1):567–90. doi:10.1146/annurev-fluid-010313-141357.
  • Dancey, C. L. 1986. A simple model for the average local entrainment rate. Phys. Fluids 29 (7):2031–34. doi:10.1063/1.865587.
  • Dave, H. L., and S. Chaudhuri. 2020. Evolution of local flame displacement speeds in turbulence. J. Fluid Mech 884:A46. doi:10.1017/jfm.2019.896.
  • Delhaye, J. M., and J. L. Achard. 1976. On the averaging operators introduced in two-phase flow modeling. Grenoble, France: Centre d’Études Nucléaires de Grenoble.
  • Dopazo, C. 1977. On conditioned averages for intermittent turbulent flows. Journal of Fluid Mechanics 81 (3):433–38. doi:10.1017/S0022112077002158.
  • Dopazo, C. 1979. A few problems and techniques in turbulent reactive systems. Acta Astron. 6 (7–8):999–1004. doi:10.1016/0094-5765(79)90087-0.
  • Dopazo, C., (1993).”Probability density function modelling for turbulent mixing and combustion”, 5th International Symposium on Refined Flow Modeling and Turbulence Measurements, Paris (France).
  • Dopazo, C., L. Cifuentes, and N. Chakraborty. 2017. Vorticity budgets in premixed combusting turbulent flows at different Lewis numbers. Phys. Fluids 29 (4):045106. doi:10.1063/1.4981219.
  • Dopazo, C., L. Cifuentes, J. Hierro, and J. Martin. 2016. Micro-scale mixing in tubulent constant density reacting flows and premixed combustion. J. Flow Turbul. Combust 96 (2):547–71. doi:10.1007/s10494-015-9663-8.
  • Dopazo, C., J. Martin, L. Cifuentes, and J. Hierro. Strain, rotation and curvature of non-material propagating iso-scalar surfaces in homogeneous turbulence. J. Flow, Turbul. Combust 101 (1): 1–32. d oi.org/1 0.1 007/s10494-017-9888-9. Accessed July 2018.
  • Dopazo, C., and E. E. O’Brien. 1979. Intermittency in free turbulent shear flows. In Turbulent shear flows I, edited by F. Durst, B. E. Launder, F. W. Schmidt, and J. H. Whitelaw, 6–23, Berlin Heidelberg, Germany: Springer-Verlag.
  • Dopazo, C., N. Swaminathan, L. Cifuentes, and X.-S. Bai. 2021. Premixed combustion modeling. In Advanced turbulent combustion physics and applications, edited by N. Swaminathan, X.-S. Bai, N. E, L. Haugen, C. Fureby, and G. Brethouwer, Vol. 3, 100–61, Cambridge, UK: Cambridge University Press.
  • Dopazo, C., and I. N. Tang, (1980). Intermittency in turbulent mixing phenomena, PhysChem Hydrodyn. 3 Europhysics Conference Abstracts, Madrid, Spain.
  • Elsinga, G. E., and C. B. da Silva. 2019. How the turbulent/non-turbulent interface is different from internal turbulence. J. Fluid Mech 866:216–38. doi:10.1017/jfm.2019.85.
  • Fabris, G. (1974). Conditionally sampled turbulent thermal and velocity fields in the wake of a warm cylinder and its interaction with an equal cool wake, Ph.D. Thesis, Illinois Institute of Technology, Chicago.
  • Gampert, M., J. Boschung, F. Hennig, M. Gauding, and N. Peters. 2014. The vorticity versus the scalar criterion for the detection of the turbulent/non-turbulent interface. J. Fluid Mech 750:578–96. doi:10.1017/jfm.2014.280.
  • Gel’fand, I. M., and G. E. Shilov. 1964. Generalized functions, Vol. 1 Academic Press
  • Janicka, J., W. Kollmann, and W. 1983. Reynolds stress closure model for conditioned variables. 4th Symp ed. Karlsruhe, West Germany: on Turbulent Shear Flows.
  • Karlovitz, B., D. W. Denniston, Wells, and F. E. Wells. 1951. Investigation of turbulent flames. The Journal of Chemical Physics 19 (5):541–47. doi:10.1063/1.1748289.
  • Keffer, J. F., G. J. Olsen, and J. G. Kawall. 1977. Intermittency in a thermal mixing layer. J. Fluid Mech 79 (3):595–607. doi:10.1017/S0022112077000330.
  • Klimenko, A. Y., and R. W. Bilger. 1999. Conditional moment closure for turbulent combustion. Progress Energy Combust. Sci 25 (6):595–687. doi:10.1016/S0360-1285(99)00006-4.
  • Kohan, K. F., and S. Gaskin. 2020. The effect of the geometric features of the turbulent/non-turbulent interface on the entrainment of a passive scalar into a jet. Phys. Fluids 32 (9):095114. doi:10.1063/5.0019860.
  • Kollmann, W., and J. H. Chen. 1998. Pocket formation and the flame surface density function. Proc. Combust. Inst 27 (1):927–34. doi:10.1016/S0082-0784(98)80490-6.
  • Kovasznay, L. S. G., V. Kibens, and R. F. Blackwelder. 1970. Large scale motion in the intermittent region of a turbulent boundary layer. J .Fluid Mech 41 (2):283–325. doi:10.1017/S0022112070000629.
  • Kuznetsov, V. R., and V. A. Sabelnikov. 1990. Turbulence and combustion. English-Edition Editor: P.A. Libby, Hemisphere Pub. Corp.
  • Kwon, J., Y. Park, and K. Y. Huh. 2016. Flamelet characteristics at the leading edge and through the flame brush of statistically steady incompressible turbulent premixed flames. Combust. Flame 164:85–98. doi:10.1016/j.combustflame.2015.11.003.
  • LaRue, J. C., and P. A. Libby. 1981a. Statistical properties of the interface in the turbulent wake of a heated cylinder. Phys. Fluids 19 (12):1864–75. doi:10.1063/1.861421.
  • LaRue, J. C., and P. A. Libby. 1981b. Thermal mixing layer downstream of a half-heated turbulence grid, phys. Fluids 24:597.
  • LaRue, J. C., P. A. Libby, and P. A. Libby. 1974. Temperature fluctuations in the plane turbulent wake. Phys. Fluids 17 (11):1956–67. doi:10.1063/1.1694651.
  • Libby, P. A. 1975. On the prediction of intermittent turbulent flows. J. Fluid Mech 68 (2):273–95. doi:10.1017/S0022112075000808.
  • Libby, P. A. 1976. Prediction of the intermittent turbulent wake of a heated cylinder, phys. Fluids 19:494–501.
  • Malin, M. R., and D. B. Spalding. 1984. A two-fluid model of turbulence and its application to heated plane jets and wakes. Phys Chem. Hydrodyn 5:339–62.
  • Nee, V. W., and L. S. G. Kovasznay. 1969. Simple phenomenological theory of turbulent shear flows. Phys. Fluids 12 (3):473. doi:10.1063/1.1692510.
  • O’Brien, E. E., and C. Dopazo, (1978). Behavior of conditioned variables in free turbulent shear flows, Lecture Notes in Physics 75, Structure and Mechanisms of Turbulence, Vol. II, 124–37.
  • Paizis, S. T., and W. H. Schwarz. 1974. An investigation of the topography and motion of the turbulent interface. J. Fluid Mech 63 (2):315–43. doi:10.1017/S0022112074001169.
  • Paizis, S. T., and W. H. Schwarz. 1975. Entrainment rates in turbulent shear flows. J. Fluid Mech 68 (2):297–308. doi:10.1017/S002211207500081X.
  • Phillips, O. M. 1955. The irrotational motion outside a free turbulent boundary layer, proc. Cambr. Phil. Soc . 51 (1):220–29. doi:10.1017/S0305004100030073.
  • Phillips, O. M. 1972. The entrainment interface. J. Fluid Mech 51 (1):97–118. doi:10.1017/S0022112072001090.
  • Pope, S. B. 1988. The evolution of surfaces in turbulence. Internat. J. Eng. Sci C. 26 (5):445–69. doi:10.1016/0020-7225(88)90004-3.
  • Sabelnikov, V. A., and A. N. Lipatnikov. 2020. A new mathematical framework for describing thin-reaction-zone regime of turbulent reacting flows at low damköhler number. Fluids 5:109. doi:10.3390/fluids5030109.
  • Saffman, P. G. 1970. A model for inhomogeneous turbulent flows. Proc. Roy. Soc. London A. 317:417–33.
  • Silva, T. S., and C. B. da Silva. 2017. The behaviour of the scalar gradient across the turbulent/non-turbulent interface in jets. Phys. Fluids 29 (8):085106. doi:10.1063/1.4997951.
  • Silva, T. S., M. Zecchetto, and C. B. da Silva. 2018. The scaling of the turbulent/non-turbulent interface at high reynolds numbers. J. Fluid Mech 843:156–79. doi:10.1017/jfm.2018.143.
  • Vervisch, L., E. Bidaux, K. N. C. Bray, and W. Kollmann. 1995. Surface density function in premixed turbulent combustion modeling. similarities between probability density function and flame surface approaches. Phys. Fluids 7 (10):2496–503. doi:10.1063/1.868693.
  • Watanabe, T., T. Naito, Y. Sakai, K. Nagata, and Y. Ito. 2015b. Mixing and chemical reaction at high schmidt number near turbulent/nonturbulent interface in planar liquid jet. Phys. Fluids 27 (3):035114. doi:10.1063/1.4915510.
  • Watanabe, T., Y. Sakai, K. Nagata, Y. Ito, T. Hayase, and T. 2015a. Turbulent mixing of passive scalar near turbulent and non-turbulent interface in mixing layers. Phys. Fluids 27 (8):085109. doi:10.1063/1.4928199.
  • Wolf, M., B. Lüthi, M. Holzner, D. Krug, W. Kinzelbach, and A. Tsinober. 2012. Investigations on the local entrainment velocity in a turbulent jet. Phys. Fluids 24 (10):105110. doi:10.1063/1.4761837.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.