134
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Numerical Prediction of Cables Fire Behaviour Using Non-Metallic Components in Cone Calorimeter

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1509-1525 | Received 22 Jul 2022, Accepted 12 Feb 2023, Published online: 23 Feb 2023
 

ABSTRACT

Electrical cables must fulfil the Construction Product Regulation (CPR) by testing them according to EN 50,399. Nevertheless, an unfordable trial and error procedure could stem from the definition of new cables. To achieve a better understanding of fire behavior of cables, researchers have been using techniques such as bench and reduced scale tests and computational fire models result in a way to minimize trial and error process. The present work proposes the combination of bench scale tests, using cone calorimeters and fire simulation modeling. In a first step, the thermal characterization of the cable parts is carried out, and then, in a second step, use these data to model complete cable samples in cone calorimeter tests. The simulations are compared with experimental data of two already rated cables. This process is intended to discard erroneous configurations, which display in bench scale signs of misbehavior compared with rated cables. This would avoid the manufacture of the complete cable if the results do not fulfill the requirements, and eventually, proceed to its production and test in full-scale when they do. This work has been carried out with two multi-core cables and the materials they were made of, and the results showed: a) the inverse modeling process to characterize materials parts obtained a fairly accurate approach, with small inaccuracies in the peaks of the curves; b) two simulation models (simple and detailed) were able to reproduce in general terms the heat release rate curve; however, they released more energy than experimental tests and some discrepancies in the peaks were observed. Despite its simplicity, simple model obtained results fairly close to the experimental curves and took less time to simulate.

Acknowledgements

This publication is part of the R&D project RTC-2017-6066-8 funded by MCIN/AEI/10.13039/501100011033/and ERDF “Una manera de hacer Europa”. The authors would like to thank to the Consejo de Seguridad Nuclear for the cooperation and co-financing the project “Metodologías avanzadas de análisis y simulación de escenarios de incendios en centrales nucleares”. This work has been previously presented in 28th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS). The authors would like to be grateful to the organization for their collaboration.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.