64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Lean Blowout Proximity Sensing in a Low Emission Liquid-Fueled Combustor

&
Received 01 May 2024, Accepted 21 Jun 2024, Published online: 02 Jul 2024
 

ABSTRACT

Advanced aircraft engine combustor designs, intended for achieving low NOx emissions, necessitate lean combustion with small operating margins above the LBO boundary, posing a high risk of exhibiting lean blowout (LBO) problems. Employing active LBO controllers receiving input from LBO proximity sensors can allow for narrower margins, thereby yielding multiple performance gains. Although several previous studies investigated LBO proximity sensing, they predominantly focused on premixed gas-fueled combustors. The application of proximity sensing approaches to liquid-fueled combustor designs, relevant to aircraft engines have not received adequate attention. Therefore, this study investigates LBO proximity sensing in a low emission lean direct injection (LDI) liquid-fueled combustor design developed by NASA. The combustor operates at atmospheric pressure with preheated air. The proximity sensing is examined by analyzing both OH* and CH* chemiluminescence signals, with a focus on assessing their relative performances. The signal analysis approaches include spectral, partial extinction event (LBO precursor) detection, signal RMS, and the CH*/OH* ratio, with an emphasis on the first two methods. Both steady-state and transient operating conditions have been examined. The combustor did not exhibit large-scale flame partial extinction and re-ignition events near LBO, as commonly observed in gas-fueled combustors. However, an increase in flame unsteadiness and partial extinction events with very subtle signatures in optical signals, have been observed. Low-pass filtering has been observed to considerably enhance the precursor signatures enabling their improved detection. With a reduction in LBO margin, an increase in signal low-frequency power, RMS, and precursor event occurrence rate have been observed, which were utilized for providing LBO proximity measures. A key finding from this study is that CH* signals provide significantly superior performance compared to OH* for the proximity sensing in all the approaches, and the potential reasons are discussed.

Nomenclature

FR=

Frequency resolution

LBO=

Lean blowout

LFP=

Low frequency power

RMS=

Root mean square

TLFP=

Total low-frequency power

TP=

Total power

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by a cooperative research award from NASA Glenn Research Center (NNX07AC92A), with Mr. John DeLaat and Dr. Clarence Chang as technical monitors. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of any of funding agencies.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.