74
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Mechanisms of Ignition and Detonation Formation in Propane-Air Mixtures

&
Pages 185-205 | Received 16 Oct 1990, Accepted 13 May 1991, Published online: 06 Apr 2007
 

Abstract

Numerical simulations of the spontaneous ignition and subsequent detonation of propane-air mixtures caused by a weak shock in a partially confined volume containing an obstacle are performed to study potential hazards from a leaking storage container. The numerical model combines a solution of the compressible equations of fluid dynamics with a phenomenological chemical induction model for species conversion and energy release. The purpose of the simulations is to study the mechanism of the ignition and detonation processes due to shock reflections from the wall boundaries. Nonreactive simulations show how the obstacle partially blocks the flow such that one portion of the shock front reflects off of the obstacle and another portion is transmitted. Reactive-flow simulations of stoichiometric propane-air show spontaneous ignition behind the shock reflected from the obstacle and later transition to detonation in the direction of the transmitted wave. A series of computations performed to study the effect of obstacle height show the various mechanisms responsible for the transition to detonation for the different obstacle sizes considered. Simulations in a mixture with variable stoichiometry around the obstacle, a more realistic picture of the physical scenario, show decay of the transmitted shock and then re-ignition as the shock reaches the stoichiometric region. Two separate areas of ignition eventually combine and transition to detonation. As this detonation propagates into the lean region far from the obstacle, it decays into a shock wave followed by a decaying flame front.

Additional information

Notes on contributors

CAROLYN R. KAPLAN

Please send all correspondence to: Dr. Carolyn Kaplan, Navy Technology Center for Safety and Survivability. Naval Research Laboratory, Code 6183, Washington, DC. 20375, Phone: (202) 404-8101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.