43
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Inhibition and Oxidation Characteristics of Chloromethanes in Reacting CO/H2O/O2 Mixtures

, &
Pages 11-37 | Received 30 Jun 1995, Accepted 01 Jul 1996, Published online: 20 Jan 2011
 

Abstract

The study of chlorinated hydrocarbon oxidation in an environment controlled by the moist CO oxidation reaction is directly relevant to the post-flame chemistry of hazardous waste incinerators, and thus to the control of pollutant emissions. In the present article, experimental results are presented on the CO/H2O/O2 reaction perturbed by trace amounts of CH3Cl, CH2Cl2, CHCl3, and CCl4 obtained from a flow reactor at temperatures near 1000 K and at atmospheric pressure. As is well documented in the fire retardent literature, the chloromethanes are observed here to be strong inhibitors of CO oxidation. In the present post-flame like environments, ranking in order of increasing inhibition effectiveness is CHCl3 < CH3C1 < CH2Cl2 on a molar basis. Inhibition from CCl4 was greater or less than CH3Cl at low or high loadings respectively. This ranking correlates well with literature rate constants of reactions controlling the radical pool level in this type of system. Detailed species profiles were obtained and revealed that all but CH3Cl formed considerable amounts of highly toxic phosgene, with yields ranging from 7 to 26% of the initially added chloromethane on a molar basis. These yields are due in part to the slow oxidation rate of phosgene, slower than all other chlorocarbons observed in this study. As a result, it, survives well into the region of CO oxidation, with potential implications on the toxicity of emissions. Finally, a rate constant for the primary consumption channel for phosgene, COCl2 + H →COCl + HCl was evaluated from these data to be 1.0 (±0.4) × 1012 cc/mol/s at 1000 K, which is a factor 2 to 4 slower than current literature estimates.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.