71
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and Modeling Study of the Effect of CF3CHFCF3 on the Chemical Structure of a Methane—Oxygen—Argon Flame

, , &
Pages 33-62 | Received 20 Dec 1994, Published online: 06 Apr 2007
 

Abstract

The chemical structure of stoichiometric methane–oxygen–argon flames seeded or not with 1% heptafluoropropane (CF3CHFCF3) was measured by the molecular beam-mass spectrometry technique. Both flames were stabilized on a water-cooled flat-flame burner under low pressure (4.2 kPa). Mole fraction profiles were computed by a simulation code as well. Modeling of the unseeded flame was performed with an updated version of a mechanism issued from Warnatz. Two submechanisms were considered to model the chemistry of fluorinated species: (i) a mechanism proposed by Westbrook to model flame inhibition by CF3Br, (ii) a modified version of (i) validated recently by Sanogo in a modeling study of the effect of C2F6 on a methane flame. Both submechanisms were compared on the basis of their reaction pathways. They have in common a key role played by CF2 in the consumption of the fluorinated additive. The consumption of this radical forms CF that is consumed very slowly with Westbrook mechanism,in contradiction with experimental results. A better agreement is obtained with the modified version so that this study extends and confirms its validation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.