300
Views
76
CrossRef citations to date
0
Altmetric
Original Articles

Impact of Detailed Multicomponent Transport on Planar and Counterflow Hydrogen/Air and Methane/Air Flames

&
Pages 157-181 | Received 20 Apr 1999, Published online: 14 Jan 2011
 

Abstract

Freely propagating and counterflow laminar premixed steady hydrogen/air and methane/air flames are investigated numerically using complex chemistry and detailed transport models. All the transport coefficients in the mixture, including thermal diffusion coefficients, are evaluated using cost-effective, accurate algorithms derived recently by the authors from the kinetic theory of gases. Our numerical results provide a quantitative assessment of the impact of thermal diffusion on planar flame speed as a function of equivalence ratio and on extinction limits of counterflow flames as a function of either strain rate or equivalence ratio. In some cases, such as rich hydrogen/air flames, the effect of thermal diffusion is actually opposite to the one expected from a qualitative viewpoint or obtained with empirical models. In addition, we observe relevant effects of thermal diffusion on extinction of methane/air counterflow flames

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.