144
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Kinetics of Copper Desorption from Highly Calcareous Soils

, , , , , & show all
Pages 797-809 | Received 30 Aug 2004, Accepted 21 Nov 2005, Published online: 05 Feb 2007
 

Abstract

Desorption of copper (Cu) is an important factor in determining Cu availability in calcareous soils. Kinetics of native and added Cu desorption by DTPA (diethylene‐triaminepentaacetic‐acid) from 15 highly calcareous soils of southern Iran were studied in a laboratory experiment. Our results showed that two constant‐rate, Elovich, simple Elovich, and parabolic‐diffusion equations were the best‐fitted equations among eight kinetic models used. The copper desorption pattern based on the parabolic‐diffusion equation revealed that the rate of native Cu desorption was higher in the first 2 h followed by a slower release rate, which suggests that two different mechanisms are involved. The trend may describe why the DTPA soil test has been considerably successful in predicting Cu availability in calcareous soils. Stepwise multiple regression equations indicated that CCE (calcium carbonate equivalent), CEC (cation exchange capacity), and clay content are the most important soil characteristics that predict the rate constants of the kinetic models. Mean extractant recovery percentage (ERP) of the soils was only 20%, which indicated that after 20 days, DTPA extracted only one‐fifth of added Cu. Regression equations indicated that as soil OM (organic matter) content increased, the value of ERP decreased. From results reported herein it seems that CCE, CEC, and clay are the most important factors controlling Cu release from highly calcareous soils of southern Iran. However, the initial soil Cu desorption rate is probably controlled by CEC.

Acknowledgments

Authors acknowledge Shiraz University for providing research facilities.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.