105
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Utilization of Existing Technology to Evaluate Spring Wheat Growth and Nitrogen Nutrition in South Dakota

Pages 949-958 | Received 01 Sep 2005, Accepted 16 Mar 2006, Published online: 24 Apr 2007
 

Abstract

Sensor‐based technologies for in‐season application of nitrogen (N) to winter wheat (Triticum aestivum L.) have been developed and are in use in the southern Great Plains. Questions arise about the suitability of this technology for spring wheat production in the northern Great Plains. A field experiment was established in Brookings, SD, to evaluate the GreenSeeker Hand Held optical sensor (NTech Industries, Ukiah, CA) for predicting in‐season N status on three spring wheat cultivars (Ingot, Oxen, and Walworth) across five N treatments. Nitrogen rates were 0, 34, 68, 102, and 136 kg N ha−1 applied preplant as ammonium nitrate. Sensor readings and plant biomass samples were collected at Feekes 6 and Feekes 10 growth stages. The sensor measures reflectance in the red and near infrared (NIR) regions of the electromagnetic spectrum. A normalized difference vegetation index (NDVI) was calculated. The ability of the sensor readings to predict biomass, plant N concentration, and plant N uptake for each sampling date was determined. In general, biomass, plant N concentration, and N uptake increased with increasing N rate for both sampling dates. Readings collected at Feekes 6 and Feekes 10 showed a significant relationship with plant biomass, N concentration, and N uptake for all varieties. Plant N uptake and NDVI resulted in a higher regression coefficients compared to biomass and plant N concentration for all varieties. Results suggest that existing sensor‐based variable nitrogen technology developed for winter wheat could be utilized in the northern Great Plains for estimating in‐season N need for spring wheat.

Notes

1Mention of trade name or commercial products in this publication is solely for the purpose for providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.