561
Views
47
CrossRef citations to date
0
Altmetric
Original Articles

Dry‐Matter and Grain Yield, Nutrient Uptake, and Phosphorus Use‐Efficiency of Lowland Rice as Influenced by Phosphorus Fertilization

&
Pages 1289-1297 | Received 18 Apr 2006, Accepted 10 Jul 2006, Published online: 04 Dec 2010
 

Abstract

Phosphorus (P) deficiency is one of the most yield‐limiting factors in lowland acid soils of Brazil. A field experiment was conducted during two consecutive years to determine dry‐matter and grain yield, nutrient uptake, and P‐use efficiency of lowland rice (Oryza sativa L.) grown on an acidic Inceptisol. Phosphorus rates used in the experiment were 0, 131, 262, 393, 524, and 655 kg P ha−1 applied as broadcast through termophosphate yoorin. Dry‐matter yield of shoot and grain yield were significantly (P<0.01) and quadratically increased with P fertilization. Concentrations (content per unit dry‐weight leaves) of nitrogen (N), P, and magnesium (Mg) were significantly increased in a quadratic fashion with the increasing P rates. However, concentrations of potassium (K), calcium (Ca), zinc (Zn), copper (Cu), and iron (Fe) were not influenced significantly with P fertilization, and Mn concentration was significantly decreased with increasing P rates. Phosphorus use efficiencies (agronomic, physiological, agrophysiological, recovery, and utilization) were decreased with increasing P rates. However, magnitude of decrease varied from efficiency to efficiency.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.