130
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Potential of Chemically Labile Fractions to Measure Mineralizable Soil Nitrogen

&
Pages 3139-3157 | Received 15 Jan 2008, Accepted 01 Feb 2009, Published online: 27 Oct 2009
 

Abstract

Nitrogen (N) in the soil is largely organic and is available to crops only after it is mineralized to inorganic N by microbial or enzyme action. To develop a soil test for guiding N applications, a method to predict the relative amount of organic N that will mineralize in a growing season is necessary. Several chemical analysis methods proposed in the literature to measure mineralizable N were examined for chemical interference, measurement precision, response to procedure modifications, and ability to distinguish differences among soils. The chemical analyses examined involved various acid or alkaline hydrolysis, with the resulting inorganic ammonium N measured by steam distillation and manual or automated diffusion. A gelatinous precipitate in the filtered and neutralized 6 M hydrochloric acid (HCl) hydrolysis solution interfered with magnesium oxide (MgO) diffusion traditionally used to measure inorganic ammonium N. Removing the precipitate appeared to circumvent the interference. The precipitate did not appear to interfere with the sodium hydroxide (NaOH) diffusion. The 6 M HCl hydrolysis extracted 34 to 103% of clay‐fixed ammonium in the soils. Steam distillation was shown to be an acceptable alternative to diffusion for measuring NaOH‐labile N. The vigor of NaOH measurement conditions caused differences in results, showing that precise and reproducible conditions are necessary. Several methods were closely correlated (r2 > 0.62) with N mineralized during aerobic incubations and could be considered for further evaluation for soil N testing. This study showed that modifications are required to several proposed analytical methods to improve their potential to estimate mineralizable N for fetilizer or other amendment recommendations for crop production

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.