222
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Amaranthus Tricolor Has the Potential for Phytoremediation of Cadmium‐Contaminated Soils

, &
Pages 3158-3169 | Received 17 Jan 2008, Accepted 12 Mar 2009, Published online: 27 Oct 2009
 

Abstract

Phytoremediation is a developing technology that uses plants to clean up pollutants in soils. To adopt this technology to cadmium (Cd)–contaminated soils efficiently, a Cd hyperaccumulator with fast growth rate and large biomass is required. In the present study, we selected Caryophyllales as a potential clade that might include Cd hyperaccumulators because this clade had a high mean concentration of zinc (Zn), which is in the same element group as Cd. Three species in Caryophyllales and three species in different clades were grown with Cd. Among them, Amaranthus tricolor showed high accumulating ability for Cd under both water‐culture and soil‐culture conditions, whereas Brassica juncea, a known Cd hyperaccumulator, accumulated high concentrations of Cd in shoots only under water‐culture conditions. This result suggests that A. tricolor has Cd‐solubilizing ability in rhizosphere. Because A. tricolor has large biomass and high growth rate, this species could be useful for phytoremediation of Cd‐contaminated fields.

ACKNOWLEDGMENTS

This study was supported financially by a Grant‐in‐Aid for Scientific Research (No. 16780043) from the Ministry of Education, Culture, Sports, and Science.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.