338
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Mineralization of Nitrogen from Biofuel By-products and Animal Manures Amended to a Sandy Soil

, , &
Pages 1315-1326 | Received 17 Sep 2008, Accepted 23 Mar 2009, Published online: 20 May 2010
 

Abstract

Transformations of nitrogen (N) from poultry litter (PL), dairy manure compost (DMC), anaerobically digested fiber (ADF), Perfect Blend 7–2–2 (PB), a compost/litter mixture (C/L), dried distillers grains from ethanol production (DG), and mustard meal from biodiesel production (MM) applied to a Quincy fine sand were investigated in an incubation experiment over 210 days. The cumulative release totals of available N after 210 days were 61, 61, 56, 44, 29, 2, and –2% for the total N in MM, PB, DG, PL, C/L, DMC, and ADF, respectively. With application of MM and DG, ammonium (NH4-N) accumulated initially in the soil with very little nitrification, possibly because of inhibition of nitrification related to chemical compounds in the amendments. Mineralization of organic N to NH4-N and nitrate (NO3-N) was relatively slow from MM- and DG-amended soils, indicating the potential for using biofuel by-products as slow-release N sources for plants.

Acknowledgments

We thank Steven Vaughn, Ted Durfy, John Rico, and Perfect Blend LLC for providing the amendments used in the study. We also acknowledge Bill Boge, who provided invaluable laboratory assistance and support on this project.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.