189
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Short-Term Irrigation Level Effects on Residual Nitrate in Soil Profile and N Balance from Long-Term Manure and Fertilizer Applications in the Arid Areas of Northwest China

, , , , , , & show all
Pages 790-802 | Received 11 Aug 2009, Accepted 13 May 2010, Published online: 22 Mar 2011
 

Abstract

A field experiment was conducted to determine the effects of long-term applications of fertilizers and manure (1982 to 2003) and short-term irrigation level (2002 and 2003) on accumulation of nitrate nitrogen (NO3-N) in soil at Zhangye Oasis, China. The treatments included manure (M) and no manure (M0) as main plots; check (Ck), nitrogen (N), nitrogen + phosphorus (NP), and nitrogen + phosphorus + potassium (NPK) as subplots; and two amounts of irrigation (I1 and I2) as subsubplots. The application of N alone resulted in large NO3-N accumulation in soil, accounting for 6% of the applied N, and the lowest crop N recovery. Application of manure resulted in increased NO3-N in the soil profile compared to treatment with no manure, and the MN treatment resulted in the greatest amount of NO3-N in soil. Nitrogen applied with P and/or K reduced the amount of NO3-N in soil in both manure and no-manure treatments compared with N only. The unaccounted N was greatest (60%) in the N-alone treatment and lowest (30%) in the NPK treatment. When manure plus fertilizer were applied together, the unaccounted N ranged from 35%–42%. Based on results from only 2 years, greater amounts of irrigation (I2) caused greater leaching of NO3-N in the soil profile compared with I1, especially in treatments receiving manure. The implications of these findings are that these high amounts of accumulated NO3-N in surface and subsoil layers can be a potential threat to surface water, underground water, and air quality in the long run. This accumulated N in the soil profile can be used as a source of available N for future crops and should be recycled by using proper crop, soil, fertilizer, and water-management strategies/practices. The findings also suggest the need for further research to make an effective and efficient use of this accumulated NO3-N in the soil profile in order to save cost of N fertilizer application to future crops.

Acknowledgments

We thank Prof. Xing Guang Xi for the helpful review. This research was funded by the Key Technologies Research and Development Program of China (2006BAD05B01 and 2006BAD04B06) and the importing talent support from ZAAS.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.