273
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Measuring Water-Extractable Phosphorus in Manures to Predict Phosphorus Concentrations in Runoff

, , , &
Pages 1071-1084 | Received 25 Sep 2009, Accepted 04 Mar 2010, Published online: 25 Apr 2011
 

Abstract

Water-extractable phosphorus (WEP) in manures can influence the risk of phosphorus (P) losses in runoff when manures are land applied. We evaluated several manure handling and extraction variables to develop an extraction procedure for WEP that will minimize pre-analysis manure-sample-handling effects on WEP measurements. We also related manure WEP determinations to runoff dissolved reactive phosphorus (DRP) concentrations found in previously conducted field simulated rainfall experiments using the same manures to evaluate WEP as a predictor of P runoff losses. Dairy and poultry manure WEP concentrations increased with manure-to-water extraction ratio and shaking time. Relative to fresh manures, drying and grinding dairy manures before analysis usually decreased WEP concentrations, while WEP in poultry manures was often increased. Pre-analysis handling effects on WEP were minimized at the 1:1000 extraction ratio with a 1-h shaking time. Relationships between manure WEP and runoff DRP concentrations were strongly influenced by season of year and WEP extraction procedure. The best prediction of DRP concentration in spring runoff experiments was with manure WEP concentration at the 1:1000 extraction ratio. With fall runoff studies, DRP concentrations were best predicted with WEP application rate rather than concentration. These seasonal differences can be explained by the greater percentage of rainfall that ran off in the fall compared to the spring. For all studies, runoff DRP concentrations were strongly related (r2 = 0.82) to the ratio of runoff to rainfall volumes, confirming that models need to take runoff hydrology into account as well as manure WEP in P-loss risk assessments.

Acknowledgments

This research was supported by the U.S. Department of Agriculture–Cooperative State Research, Education, and Extension Service National Research Initiative Agricultural Systems Research Program (Grant No. 01-35108-10698), the University of Wisconsin Nonpoint Pollution and Demonstration Project, and the College of Agricultural and Life Sciences, University of Wisconsin–-Madison.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.